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A versatile tool for handling unstructured corner-point grids
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A multiscale methodology for porous media flow

A multiscale mixed finite-element method (MsMFEM) for elliptic
and slightly parabolic problems (pressure equation)

−∇ · (k(x)∇p) + c(x)
∂p

dt
= q.

A two-scale “upscaling/downscaling” approach for hyperbolic
problems (saturation equations)

φ
∂S

dt
+∇ · (f(S)v) = qw.
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Mixed finite element methods: −∇ · (k(x)∇p) = q

In mixed FEMs one seeks v ∈ V and p ∈ U such that∫
Ω

k−1v · u dx−
∫

Ω
p ∇ · u dx = 0 ∀u ∈ V,∫

Ω
l ∇ · v dx =

∫
Ω

ql dx ∀l ∈ U.

Here V ⊂ {v ∈ (L2)d : ∇ · v ∈ L2} and U ⊂ L2.

In MsMFEM the approximation space V for velocity v is designed
so that it embodies the impact of fine scale structures.
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The multiscale mixed finite element method
Key features
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Accuracy: flow scenarios match
closely fine grid simulations.

Mass conservation: conserves
mass on coarse and fine grids.

Efficiency: basis functions can be
computed in parallel and need not
be recomputed.

Flexibility: unstructured and
irregular grids are handled easily.

Robustness: suitable for models
with highly oscillatory coefficients
and large grid-cell aspect ratios.
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MsMFEM simplifies “upscaling” and coarse grid generation
No need for resampling procedures

MsMFEM may utilize any coarse grid with blocks that consists
of a connected collection of cells in an underlying fine grid
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Multiscale mixed finite element methods
Examples of blocks that arise when partitioning corner-point grids in index space

Disconnected blocks are split into a family of connected subblocks.
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Multiscale methods versus upscaling methods
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To capitalize on the enhanced velocity resolution provided by
multiscale methods we need to exploit subgrid details.
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MsMFEM for porous media flow pressure equations

Conclusion I: MsMFEM provides a flexible, robust and efficient
tool to get accurate velocity fields on fine grids. The saturation
equation becomes the bottle-neck in large flow simulations.

Challenge: Can we develop a similar multiscale methodology for
solving the saturation equation more efficiently?
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A multiscale method hyperbolic transport equations
Key idea: Upscale – advance saturation – downscale

Assume that Sn is a saturation field on a fine grid {T} at t = tn,
and denote non-degenerate fine grid interfaces by γij = ∂Ti ∩ ∂Tj .

1: For each block K in a coarse grid (not necessarily the same
coarse grid as for MsMFEM), do

S̄n+1|K = S̄n|K +
4t∫

K φ dx

∫
K

qw dx−
∑

γij⊂∂K

Fij(S
n)

 ,

where Fij(S) = max{fw(Si)vij ,−fw(Sj)vij}.

2: Map S̄n+1|K onto the fine grid: Sn+1|K = IK(S̄n+1).
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Coarse-to-fine grid interpolation:

Basic idea: Given a saturation value S̄ in a coarse grid block K,
define χK so that IK(S̄) = χK(x, t(S̄)) gives a plausible saturation
field inside K. Here t(S̄) is defined so that mass is preserved:∫

K
IK(S̄)φdx = S̄|K

∫
K

φ dx.

Local approach: χK is defined by

φ
∂χK

∂t
+∇ · (f(χK)v(x, t0)) = qw in K,

χK(x, 0) = S(x, t0), and f(χK) = 1 on the inflow part of ∂K.

Global approach: χK(x, t) = S0(x, t)|K , where S0 is a solution
of the global saturation on an arbitrary subgrid of the coarse grid.
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Multiscale method with local approach

The local approach has the flavor of an upscaling method, and is
mainly a tool to improve accuracy of coarse grid simulations.

Model 2 from 10th SPE comparative
solution project (Cartesian grid).

Fine grid: 1.122 ·106 cells.

Coarse grid: 2244 blocks.
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+ Very flexible w.r.t. grids (same constraint as MsMFEM).

+ Flow physics handled according to fine-scale model.

− Limited applicability: Assumes that flow patterns do not
change significantly throughout simulation.
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Local approach: Prediction of oil-production
Water-cut curves (fraction of water in produced fluid) for producers in SPE benchmark.
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Multiscale method with global approach

The global approach has similarities with upscaled simulation
models that employ pseudo-relative permeability functions.

Application: Run multiple simulations using one set of
interpolation operators. (History matching and/or quantify
uncertainty in oil-production forecasts).

+ Flexible w.r.t. grids and physics modeled on fine-scale.

+/− Allows flow patterns to change during initial simulation, but
flow patterns in subsequent simulations should not deviate a
lot from flow patterns in initial simulation.
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Global approach: a versatile tool for history matching
Corner-point grid model with log-normal distributed permeability field in each layer

Velocity: MsMFEM with a
single set of basis functions.

History: Well configuration
changed at 0.7 PVI.

Permeability: K = 10δK0,
δ(x) ∼ Random([−2, 2]).

Logarithm of K0
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Why multiscale?

Development of multiscale methodologies for flow in porous media
is not necessarily driven by a desire for higher resolution.
Robustness and flexibility w.r.t grids is probably more important.

Multiscale methods tend to have the following features:

Easily parallelizable.

Low memory requirements.

Fine-scale computations part of a preprocessing step.

Easy grid generation: No need for resampling procedures.

More accurate and versatile than standard methods.
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Conclusions

Status: Multiscale methods do not currently provide a full-fledged
alternative to multi-phase flow upscaling, but it is our belief that
they can help create more robust and flexible simulation tools.

The proposed methodology seems to be quite robust, and is
straightforward to implement for complex unstructured grids.

Aim: an efficient and seamless methodology for oil reservoir
simulation that can handle complex grids and exploits the fine
scale information needed to get reliable production forecasts.

Next: More physics: miscible and compressible flow that can be
dominated by gravity and/or capillary forces.
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