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Topic of this talk

Aim:
To construct fast implicit solver for

φ
∂S

∂t
+ v · ∇f(S) = Q(S), (1)

assuming no gravity and no capillary pressure.

Method:
Decompose (1) in sequence of local problems.
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Implicit First-Order Upwind Scheme 1D
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1 ) = Q2(S
n
2 ),
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Implicit First-Order Upwind Scheme 1D

S1 · · · Sk−1 Sk Sk+1 · · · Sm

v1 vk−1 vk vm−1

Consider the scheme

φ

∆t
(Sn

k−Sn−1
k ) +

1

∆x

(
vk−1f(Sn

k−1)− vkf(Sn
k )

)
= Qk(Sn

k ),

where we have assumed vk > 0.
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Implicit First-Order Upwind Scheme 1D

S1 · · · Sk−1 Sk Sk+1 · · · Sm

v1 vk−1 vk vm−1

Consider the scheme

φ

∆t
(Sn − Sn−1) +

1

∆x


−v1

v1 −v2

. . . . . .
vm−1 0


f(Sn

1 )
...

f(Sn
m)

 = Q(S).

where we have assumed vk > 0.

Lower triangular matrix =⇒ equations can be solved in sequence.
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Implicit First-Order Upwind Scheme 2D

Then consider the same scheme in 2D with
m grid cells and fluxes given by the (sparse)
m×m-matrix v.

k j
vkj

Sn
k − Sn−1

k

∆t
− 1

h

( ∑
j

max(vkj , 0)f(Sn
k ) +

∑
j

min(vkj , 0)f(Sn
j )

)
= Qk(Sn

k ).

Again, this can be written in matrix notation

1

∆t
(Sn − Sn−1) + V

f(Sn
1 )

...
f(Sn

m)

 = Q(Sn).

where

Vkk = − 1

h

∑
j

max(vkj , 0), Vkj = − 1

h
min(vkj , 0).

Is V triangular?
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“Homogeneous” Quarter five-spot

What does V look like?

1 2 3

4 5 6

7 8 9

V =



∗
∗ ∗

∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗
∗ ∗ ∗

∗ ∗ ∗


Lower triangular
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“Heterogeneous” Quarter five-spot
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Graph Interpretation

What can be done?
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Graph Interpretation Continued

“Homogeneous” Quarter five-spot as directed graph

1 2 3

4 5 6

7 8 9

Can this directed graph be flattened
such that all arrows point to the right?

1 2 3 4 5 6 7 8 9

Yes!

CMWR, Copenhagen 9/ 22



Graph Interpretation Continued

“Homogeneous” Quarter five-spot as directed graph

1 2 3

4 5 6

7 8 9

Can this directed graph be flattened
such that all arrows point to the right?

1 2 3 4 5 6 7 8 9

Yes!

CMWR, Copenhagen 9/ 22



Graph Interpretation Continued

“Homogeneous” Quarter five-spot as directed graph

1 2 3

4 5 6

7 8 9

Can this directed graph be flattened
such that all arrows point to the right?

1 2 3 4 5 6 7 8 9

Yes!

CMWR, Copenhagen 9/ 22



Graph Interpretation Continued

“Heterogeneous” Quarter five-spot as directed graph

1 2 3

4 5 6

7 8 9

What about this directed graph?
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Topological sorting

Topological sorting:

Find sequence of vertex numbers (p1, . . . , pm) such that

pi < pj

whenever there is a directed edge from vertex i to vertex j.

A topological sort of the vertices in a directed graph can be found in
linear time as the post-order of the depth-first traversal of the
reversed graph.
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Graph Interpretation Continued

“Heterogeneous” Quarter five-spot as directed graph

1 2 3

4 5 6

7 8 999
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4
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7 8
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6

9

1 4 7 8 5 2 3 6 9
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Triangularisation of the coefficient matrix

By rearranging the rows and columns in the order
(1, 4, 7, 8, 5, 2, 3, 6, 9), we obtain a triangular V :

1 2 3

4 5 6

7 8 9

1 4 7 8 5 2 3 6 9
1
4
7
8
5
2
3
6
9



∗
∗ ∗

∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗
∗ ∗ ∗

∗ ∗ ∗


Duff and Reid. An implementation of Tarjans algorithm for block triangularisation of a matrix. 1978.

Dennis, Martinez and Zhang. Triangular decomposition methods for solving reducible nonlinear systems. 1994.
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Triangularisation of the coefficient matrix

Again, this can be written in matrix notation

1

∆t
(S̃n − S̃n−1) + L

f(S̃n
1 )

...
f(S̃n

m)

 = PQ(S̃n).

where S̃ = PS, L = PV P T and P is a permutation matrix
obtained from a topological ordering of the grid cells.
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Implicit First-Order Upwind Scheme 2D

k j
vkj

Sn
k − Sn−1

k

∆t
− 1

h

( ∑
j

max(vkj , 0)f(Sn
k ) +

∑
j

min(vkj , 0)f(Sn
j )

)
= Qk(Sn

k ).
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Implicit First-Order Upwind Scheme 2D

k j
vkj

Find uh ∈ Vh such that∫
K

Sn
k − Sn−1

k

∆t
vh−

∫
K

f(Sn
k ) v·∇vh+

∑
j

∫
∂K

vhf̂(Sn
k , Sn

j , vkj)=

∫
K

Qk(Sn
k )vh,

For all vh ∈ Vh.

Here f̂ is the upwind flux given by

f̂(Sk, Sj , vkj) = f(Sk) max(vkj , 0) + f(Sj) min(vkj , 0).
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Delineation of Reservoirs

Consider a domain with multiple injectors at positions (x1, . . . ,xn).
Solve

v · ∇Ci = Qi

where Qi > 0 for the injector at injector xi and zero elsewhere.

Ci(x) =

{
1 x on streamline from injector i,

0 otherwise.
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Porosity of the model 2 of the SPE Comparative Solution Project.
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Delineation of Reservoirs Continued
Model 2 of the SPE Comparative Solution Project*.

Size: 60× 220× 85 (1.122 mill. grid blocks)
Simulation time: a few minutes.

Christie and Blunt Tenth SPE Comparative Solution Project: A Comparison of Upscaling Techniques
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Twophase Flow in 2D

First-order upwind 2nd-order discontinuous Galerkin

Solution after 0.2 PVI .

Solution after 0.3 PVI.

Water flooding in layer 6 of the same model computed with 3 pressure
updates.
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Twophase Flow in 2D

0.15 PVI 0.24 PVI 0.36 PVI

Water flooding in homogeneous domain with highly permeable
fractures computed with the first-order upwind scheme.
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Model 2 of the SPE Comparative Solution Project

∆t=1 day, 40 minutes ∆t=20 days, 2 minutes
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Watercut curves computed with the first-order upwind scheme (solid
line) and with FrontSim (dashed).
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Highlights

Why is this a good idea
Extremely fast solvers: O(n) operations for n unknowns.
Local control over Newton iteration.
Small memory requirements.
Based on well-known conservative discretisation.

Similar to streamline methods in performance: millions of grid
cells on desktop computers!
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