Fast Simulation of Highly Heterogeneous and Fractured Porous Media

Knut-Andreas Lie

SINTEF ICT, Dept. Applied Mathematics

Bergen, May 2006

Applied Mathematics

May 2006 ∢ □ ▶ 1/20

Vision:

Direct simulation of fluid flow on high-resolution geomodels of highly heterogeneous and fractured porous media in 3D.

Research keywords:

- multiscale methods, upscaling/downscaling
- robust discretisations of pressure equations
- fast simulation of fluid transport

Contact:

```
http://www.math.sintef.no/geoscale/
Knut-Andreas.Lie@sintef.no
+47 22 06 77 10 / +47 930 58 721
```


May 2006 ∢ □ ► 2/20

GeoScale Portifolio – A Collaborative Effort

Partners:

- SINTEF
- Universities of Bergen, Oslo, and Trondheim
- Schlumberger, Shell, Statoil

Education:

4-5 PhD grants (RCN, UoB, NTNU, Shell)

- 4 postdoc grants (RCN, EU, Schlumberger)
- 2 master students

Collaboration:

Stanford, Texas A&M, Umeå

Schlumberger Moscow Research, Statoil Research Centre

For various reasons, there is a need for direct simulation on high-resolution geomodels. This is difficult:

• K spans many length scales and has multiscale structure

 $\mathsf{max}\,\mathbf{K}/\,\mathsf{min}\,\mathbf{K}\sim 10^3\text{--}10^{10}$

• Details on all scales impact flow

Gap between simulation models and geomodels:

- High-resolution geomodels may have $10^7 10^9$ cells
- $\bullet\,$ Conventional simulators are capable of about 10^5-10^6 cells

May 2006 ∢ □ ► 4/20

Applications for fast (and lightweight) simulators for :

- direct simulation of large geomodels
- multiple realisations
- history-matching
- . . .

Long-term collaboration with Schlumberger:

- Petrel workflow tools
- FrontSim streamline simulator

Developing More Robust Discretisations

Accurate simulation on industry-standard grid models is challenging!

Our approach: finite elements and/or mimetic methods

Applied Mathematics

 We seek a methodology that:

- gives a detailed image of the flow pattern on the fine scale, without having to solve the full fine-scale system
- is robust and flexible with respect to the coarse grid
- is robust and flexible with respect to the fine grid and the fine-grid solver
- is accurate and conservative
- is fast and easy to parallelise

Standard upscaling:

Standard upscaling:

₽

Coarse grid blocks:

May 2006 < D > 8/20

Standard upscaling:

₽

Coarse grid blocks:

Flow problems:

Standard upscaling:

↓ ↑

Coarse grid blocks:

↓ ↑

Flow problems:

Standard upscaling:

Coarse grid blocks:

Flow problems:

Standard upscaling:

↓ ↑

Multiscale method:

Coarse grid blocks:

Flow problems:

May 2006 < D > 8/20

Standard upscaling:

Multiscale method:

↓ ↑

Coarse grid blocks:

Flow problems:

O SINTEF

↓ Coarse grid blocks:

Applied Mathematics

Standard upscaling:

Multiscale method:

↓ ↑

Coarse grid blocks:

↓ ↑

Flow problems:

May 2006 < D > 8/20

Standard upscaling:

↓ ↑

Coarse grid blocks:

Flow problems:

() SINTEF

Multiscale method:

Coarse grid blocks:

*	- 4	4	4	-	-	-	-	-	
1	-	-		. ~	-		-	-	1
*	4	-	~		-	~	-	1	1
٠	~	-	-			~	. 1	1	1
٠	*	-	~			-	-	1	٠

Applied Mathematics

May 2006 < D > 8/20

Advantage: Accuracy 10th SPE Comparative Solution Project

- Geomodel: $60 \times 220 \times 85 \approx 1,1$ million grid cells
- Simulation: 2000 days of production

May 2006 ∢ □ ▶ 9/20

Advantage: Accuracy SPE10 Benchmark ($5 \times 11 \times 17$ Coarse Grid)

() SINTEF

May 2006 ∢ □ ▶ 10/20

Advantage: Robustness SPE10, Layer 85 (60 × 220 Grid)

Logarithm of horizontal permeability

Coarse grid (12 x 44) saturation profile

Coarse grid (6 x 22) saturation profile

Coarse grid (3 x 11) saturation profile

Reference saturation profile

MsMFEM saturation profile

MsMFEM saturation profile

MsMFEM saturation profile

 Direct solution may be more efficient, so why bother with multiscale?

- Full simulation: $\mathcal{O}(10^2)$ time steps.
- Basis functions need not be recomputed

Also:

- Possible to solve very large problems
- Easy parallelization

Flexibility

Multiscale mixed formulation: coarse grid = union of cells in fine grid

- Given a numerical method that works on the fine grid, the implementation is straightforward.
- One avoids resampling when going from fine to coarse grid, and vice versa

Other formulations:

Finite-volume methods: based upon dual grid \longrightarrow special cases that complicate the implementation in the presence of faults, local refinements, etc.

Flexibility wrt. Grids

Applied Mathematics

Flexibility wrt. Grids Around Flow Barriers, Fractures, etc

May 2006 ∢ □ ▶ 15/20

Flexibility wrt. Grids Around Wells

May 2006 ∢ □ ▶ 16/20

Flexibility wrt. Grids Fracture Networks

¹Grid model courtesy of M. Karimi-Fard, Stanford

Applied Mathematics

May 2006 ∢ □ ▷ 17/20

Fast Simulation of Fluid Transport

- discontinuous Galerkin
- reordering
- large time-steps

- multiphase transport
- tracer flow
- delineation of volumes

3D Streamline Simulation

(Figures by Yann Gautier)

May 2006 ∢ □ ▶ 19/20

Multiscale methods

- Well models (adaptive gridding, multilaterals)
- More general grids (block-structured, PEBI, ..)
- Compressibility, multiphase and multicomponent
- Adaptivity
- Fractures and faults

Applications:

- Multiscale history matching
- Carbonate reservoirs..?
- CO₂..?

