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Multiscale methods for reservoir simulation

Multiscale methods for reservoir simulation:

Multiscale finite volume method

Multiscale mixed finite element method

Upscaling-downscaling approaches based on nested gridding

Key idea:

Capture subgrid effects on coarse grids, and allow
reconstruction of velocity fields on underlying fine grids

Primary applications:

Perform simulations on non-upscaled geological models

Perform simulations on coarse grid models with complex
geometrical features and/or complex grid block geometries
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Prerequisites for real-field simulation studies

Prerequisite I: Applicable

Ability to handle unstructured industry standard geomodel grids.

Prerequisite II: Efficient

More efficient / more easily parallelizable / less memory
requirements than fine grid solvers.

Prerequisite III: Better than upscaling

More accurate / less complex than upscaling based strategies.
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Industry standard geomodel grids I: Corner-point grid

Grid-cell corner-points lie on inclined pillars (lines).

Layers may collapse to a hyperplane in certain regions.

Non-collapsed cells have polyhedral shape with 5 – 8 corners.

In physical space, corner-point grids are unstructured!
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Industry standard geomodel grids II: PEBI grid

Voronoi grid: Each cell is a convex polyhedron P associated
with a point p ∈ P such that if x ∈ P , then x is closer to p
than any other point in P.

PEBI grid: Voronoi grid where the line that connects two
neighboring points is perpendicular to the interface between
the two corresponding Voronoi cells.
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Multiscale mixed finite element method
Model problem

Consider the following model problem

Darcy’s law: v = −k (∇p− ρg∇D) ,

Mass balance: ∇ · v = q in Ω,

Boundary conditions: v · n = 0 on ∂Ω.

The multiscale structure of porous media enters the equations
through the absolute permeability k, which is a symmetric and
positive definite tensor with uniform upper and lower bounds.

We will refer to p as pressure and v as velocity.
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Multiscale mixed finite element method
The mixed formulation

Mixed finite element methods

In mixed FEMs one seeks v ∈ V and p ∈ U such that∫
Ω
k−1v · u dx−

∫
Ω
p ∇ · u dx =

∫
Ω
k−1ρg∇D · u dx ∀u ∈ V,∫

Ω
l ∇ · v dx =

∫
Ω
ql dx ∀l ∈ U.

Here V ⊂ {v ∈ (L2)d : ∇ · v ∈ L2, v · n = 0 on ∂Ω} and U ⊂ L2.

Multiscale mixed finite element method (MsMFEM)

V designed to embody the impact of fine scale structures.
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Multiscale mixed finite element method
Basis functions

Associate a basis function χm for pressure with each grid block K:

U = span{χm : Km ∈ K} where χm =

{
1 if x ∈ Km,

0 else,

and a velocity basis function ψij with each interface ∂Ki ∩ ∂Kj :

V = span{ψij = −k∇φij}

ψij · n = 0 on ∂(Ki ∪Kj)

∇ · ψij =

{
q(Ki) in Ki,
−q(Kj) in Kj .

Homogeneous medium Heterogeneous medium
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Multiscale mixed finite element method
Coarse grids are obtained by up-gridding

MsMFEMs allows fully automated coarse gridding strategies: grid
blocks need to be connected, but can have arbitrary shapes.

Uniform up-gridding: grid blocks are shoe-boxes in index space.
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Multiscale mixed finite element method
Computing velocity basis functions

MsMFEM requires that a conservative numerical method is used to
compute velocity basis functions.

Corner-point grid:

TPFA or MPFA finite volume methods

MFEM on tetrahedral subgrid of corner-point grid

Mimetic finite difference method

PEBI grid:

TPFA finite volume method

Mimetic finite difference method

Given a subgrid discretization technique, MsMFEM applies!
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Prerequisite II: Reduced computational complexity

Time t(n) to solve a linear system of dimension n: t(n) ∼ O(nα).
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Local work
Global work

Fine scale solution
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Fine scale solution

Local work
Global work

α = 1.2 α = 1.5

Cost of subgrid computations vs. coarse grid computations

MsFVM = Multiscale finite volume method (Jenny et al.)
NSUM = Numerical subgrid upscaling method (Arbogast et al.)
ALGUNG = Adaptive local-global upscaling + Nested gridding
downscaling (Chen and Durlofsky)
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Why MsMs offer significant savings in computation time

Efficiency

The pressure equation generally needs to be solved multiple times.

Basis functions are computed only once.

Parallelization

Multiscale methods are easy to parallelize.

Basis functions can be computed and processed independently.

Memory requirements

No need to store global fine-grid geomodel in memory.

Fine-grid data can be distributed or loaded in patches.

Solution of coarse grid system is requires significantly less
memory than solution of global fine-grid system.

Applied Mathematics 12/21



Prerequisite III: Multiscale methods versus upscaling
Cartesian coarse grids

Cartesian coarse grids: MsMs tend to give enhanced accuracy
only if simulations are performed on a subgrid of the coarse grid.
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Saturation errors relative to a reference solution.
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MsMFEM versus upscaling on complex coarse grids
Up-gridded corner-point grids

Complex coarse grid-block geometries: MsMFEM is more
accurate than upscaling, also for coarse grid simulation.
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Coarse grid velocity errors Coarse grid saturation errors

Corner-point grid model with layered log-normal geostatistics.
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Prerequisites for real-field simulation
Checklist for MsMFEM

√
Handles industry standard geological models.

√
Offers significant savings in computation time, is easier to
parallelize, and requires less memory than fine grid solvers.

√
Provides a more robust and flexible alternative to upscaling.

√
Provides a tool to perform reservoir simulation studies directly
on large geological models.

Valid option?
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Multiscale methods for high-resolution simulation studies
Reservoir simulation applications

High-resolution: Geomodels with multi-million cells and more.

Current high-resolution simulation applications for MsMFEM:

A validation tool for geomodeling.

Visualization of flow patterns and injector-producer pairs.

History matching on moderate sized geomodels (∼ 106 cells).

MsMFEM + streamline methods have been used to history match a geomodel with 32 injectors, 69
producers, and approximately 1 million cells.

Applications that are currently out of bound:

History matching on very large geomodels.

Flows strongly influenced by capillary forces.
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Multiscale methods for high-resolution simulation studies
A tool for validation and visualization

High-resolution simulations require simplifying assumptions:

Capillary forces are negligible.

Gravity forces can be handled by operator splitting.

Options for modeling transport:

Streamline methods – efficiency decays for compressible
flows, and when frequent pressure updates are needed.

Implicit upstream schemes – can be made as efficient as
streamline methods, and are more generic.
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How to make implicit upstream schemes efficient

Topological sort

By arranging cells in a directed graph, systems that arise from
implicit upstream schemes can be solved using a sequential
cell-by-cell Newton iteration.

Key features

System with n unknowns solved in O(n) operations.

Cell-wise newton iterations.

“No” grid restrictions.

Low memory requirements.

Easy to parallelize.
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Example I: Comparison with streamline methods
Model 2 of the Tenth SPE Comparative Solution Project*: 1.122 million grid cells

Water-cut curves for each producer computed with first-order
upwind scheme (solid line) and FrontSim (dashed line).

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

∆t=1 day: 40 minutes. ∆t=20 days: 2 minutes

Computer: AMD Athlon 64 X2 dual core processor (2× 2.2 GHz).

*Christie and Blunt: Tenth SPE Comparative Solution Project: A Comparison of Upscaling Techniques
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Example II: Compartmentalization of reservoir

MsMFEM and topological sorting routine

– also applicable to compartmentalize reservoirs:

v · ∇Ci =

{
1 for each cell perforated by injector i,

0 otherwise.

Model 2 of the Tenth SPE Comparative Solution Project
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Conclusions and outlook

Status:

MsMFEM is a robust and versatile tool for reservoir simulation.

Aim:

An efficient and seamless methodology for oil reservoir simulation:

Simulations with user-defined resolution and accuracy.

Road Ahead:

Further validation, more complex physics, and history matching.
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