Generic framework for taking geological models as input for reservoir simulation

Collaborators:

SINTEF:Stein Krogstad, Knut-Andreas Lie, Vera L. HaugeTexas A&M:Yalchin Efendiev and Akhil Datta-GuptaNTNU:Vegard StenerudStanfordLou Durlofsky

Nature's input

Plausible flow scenario

Today:

Geomodels too large and complex for flow simulation: Upscaling performed to obtain

- Simulation grid(s).
- Effective parameters and pseudofunctions.

Tomorrow:

Earth Model shared between geologists and reservoir engineers — Simulators take Earth Model as input, users specify grid-resolution to fit available computer resources and project requirements.

Main objective:

Build a generic framework for reservoir modeling and simulation capable of taking geomodels as input.

- generic: one implementation applicable to all types of models.

Value: Improved modeling and simulation workflows.

- Geologists may perform simulations to validate geomodel.
- Reservoir engineers gain understanding of geomodeling.
- Facilitate use of geomodels in reservoir management.

Simulation model and solution strategy

Three-phase black-oil model

Equations:

• Pressure equation

$$c_t \frac{\partial p_o}{dt} + \nabla \cdot v + \sum_j c_j v_j \cdot \nabla p_o = q$$

• Mass balance equation for each component

Solution strategy: Iterative sequential

Primary variables:

- Darcy velocity \boldsymbol{v}
- Liquid pressure p_o
- Phase saturations s_j, aqueous, liquid, vapor.

$$\begin{array}{rcl} v_{\nu+1} &=& v(s_{j,\nu}), \\ p_{o,\nu+1} &=& p_o(s_{j,\nu}), \end{array} \qquad s_{j,\nu+1} = s_j(p_{o,\nu+1},v_{\nu+1}). \end{array}$$

(Fully implicit with fixed point rather than Newton iteration).

Simulation model and solution strategy

Three-phase black-oil model

Equations:

• Pressure equation

$$c_t \frac{\partial p_o}{dt} + \nabla \cdot v + \sum_j c_j v_j \cdot \nabla p_o = q$$

• Mass balance equation for each component

Primary variables:

- Darcy velocity v
- Liquid pressure p_o
- Phase saturations s_j, aqueous, liquid, vapor.

Solution strategy: Iterative sequential

$$\begin{array}{rcl} v_{\nu+1} &=& v(s_{j,\nu}), \\ p_{o,\nu+1} &=& p_o(s_{j,\nu}), \end{array} & s_{j,\nu+1} = s_j(p_{o,\nu+1},v_{\nu+1}). \end{array}$$

(Fully implicit with fixed point rather than Newton iteration).

Advantages with sequential solution strategy:

- Grid for pressure and mass balance equations may be different.
- Multiscale methods may be used to solve pressure equation.
- Pressure eq. allows larger time-steps than mass balance eqs.

Pressure equation:

- Solution grid: Geomodel no effective parameters.
- Discretization: Multiscale mixed / mimetic method

Coarse grid: obtained by up-gridding in index space

Mass balance equations:

- Solution grid: Non-uniform coarse grid.
- Discretization: Two-scale upstream weighted FV method
 - integrals evaluated on geomodel.
- Pseudofunctions: No.

< 🗆 🕨

Multiscale mixed/mimetic method (4M)

Generic two-scale approach to discretizing the pressure equation:

- Mixed FEM formulation on coarse grid.
- Flow patterns resolved on geomodel with mimetic FDM.

Standard upscaling:

Standard upscaling:

Coarse grid blocks:

Standard upscaling:

Coarse grid blocks:

Flow problems:

< □ →

Standard upscaling:

Coarse grid blocks:

Flow problems:

< □ →

Standard upscaling:

Coarse grid blocks:

Flow problems:

< □ →

Standard upscaling:

Coarse grid blocks:

Flow problems:

< □ →

Standard upscaling:

↓ ↑

Coarse grid blocks:

↓ ↑

Flow problems:

Multiscale method (4M):

() SINTEF

< □ →

Standard upscaling:

↓ ↑

Flow problems:

() SINTEF

Multiscale method (4M):

 \Downarrow

Coarse grid blocks:

↓ Flow problems:

Applied Mathematics

Standard upscaling:

↓ ↑

Flow problems:

Multiscale method (4M):

Coarse grid blocks:

q#-1

↓ ↑

Flow problems:

Standard upscaling:

↓ ↑

Flow problems:

() SINTEF

Multiscale method (4M):

↓ ↑

Coarse grid blocks:

q#-1

↓ ↑

Flow problems:

Discrete hybrid formulation: $(u, v)_m = \int_{T_m} u \cdot v \, dx$

Find $v \in V$, $p \in U$, $\pi \in \Pi$ such that for all blocks T_m we have

$$\begin{aligned} &(\lambda^{-1}v, u)_m - (p, \nabla \cdot u)_m + \int_{\partial T_m} \pi u \cdot n \, ds &= (\omega g \nabla D, u)_m \\ &(c_t \frac{\partial p_o}{dt}, l)_m + (\nabla \cdot v, l)_m + (\sum_j c_j v_j \cdot \nabla p_o, l)_m &= (q, l)_m \\ &\int_{\partial T_m} \mu v \cdot n \, ds &= 0. \end{aligned}$$

for all $u \in V$, $l \in U$ and $\mu \in \Pi$.

Solution spaces and variables: $\mathcal{T} = \{T_m\}$ $V \subset H^{\text{div}}(\mathcal{T}), \quad U = \mathcal{P}_0(\mathcal{T}), \quad \Pi = \mathcal{P}_0(\{\partial T_m \cap \partial T_n\}).$ $v = \text{velocity}, \quad p = \text{block pressures}, \quad \pi = \text{interface pressures}.$

< 🗆 🕨

$\underset{\text{Coarse grid}}{\text{Multiscale mixed}/\text{mimetic method}}$

Each coarse grid block is a connected set of cells from geomodel. **Example:** Coarse grid obtained with uniform coarsening in index space.

Grid adaptivity at well locations:

One block assigned to each cell in geomodel with well perforation.

Definition of approximation space for velocity:

The approximation space V is spanned by basis functions ψ_m^i that are designed to embody the impact of fine-scale structures.

Definition of basis functions:

For each pair of adjacent blocks T_m and T_n , define ψ by

$$\begin{split} \psi &= -K \nabla u \text{ in } T_m \cup T_n, \\ \psi \cdot n &= 0 \text{ on } \partial (T_m \cup T_n), \end{split} \qquad \nabla \cdot \psi = \begin{cases} w_m & \text{ in } T_m, \\ -w_n & \text{ in } T_n, \end{cases}$$

Split ψ : $\psi_m^i = \psi|_{T_m}, \quad \psi_n^j = -\psi|_{T_n}.$

Basis functions time-independent if w_m is time-independent.

() SINTEF

< 🗆 🕨

Multiscale mixed/mimetic method Choice of weight functions

Role of weight functions

Let $(w_m, 1)_m = 1$ and let v_m^i be coarse-scale coefficients.

$$v = \sum_{m,i} v_m^i \psi_m^i \quad \Rightarrow \quad (\nabla \cdot v)|_{T_m} = w_m \sum_i v_m^i.$$

 $\longrightarrow w_m$ gives distribution of $\nabla \cdot v$ among cells in geomodel.

Choice of weight functions

$$\nabla \cdot v \sim c_t \frac{\partial p_o}{dt} + \sum_j c_j v_j \cdot \nabla p_o$$

• Use adaptive criteria to decide when to redefine w_m .

• Use $w_m = \phi$ ($c_t \sim \phi$ when saturation is smooth).

\longrightarrow Basis functions computed once, or updated infrequently.

Multiscale mixed/mimetic method Workflow

At initial time Detect all adjacent blocks Compute ψ for each domain

For each time-step:

- Assemble and solve coarse grid system.
- Recover fine grid velocity.
- Solve mass balance equations.

Velocity basis functions computed using mimetic FDM

Mixed FEM for which the inner product $(u, \sigma v)$ is replaced with an approximate explicit form $(u, v \in H^{\text{div}} \text{ and } \sigma \text{ SPD})$,

- no integration, no reference elements, no Piola mappings.

May also be interpreted as a multipoint finite volume method.

Properties:

- Exact for linear pressure.
- Same implementation applies to all grids.
- Mimetic inner product *needed* to evaluate terms in multiscale formulation, e.g., $(\psi_m^i, \lambda^{-1}\psi_m^j)$ and $(\omega g \nabla D, \psi_{m,j})$.

Multiscale mixed/mimetic method Mimetic finite difference method vs. Two-point finite volume method

Two-point FD method is "generic", but ...

Example:

Homogeneous+isotropic, symmetric well pattern \rightarrow equal water-cut.

Mimetic FD method

$\underset{\text{Well modeling}}{\text{Multiscale mixed}/\text{mimetic method}}$

Grid block for cells with a well

- correct well-block pressure
- no near well upscaling
- free choice of well model.

Alternative well models

Peaceman model:

 $q_{\text{perforation}} = -W_{\text{block}}(p_{\text{block}} - p_{\text{perforation}}).$

Calculation of well-index grid dependent.

Exploit pressures on grid interfaces:

 $q_{\text{perforation}} = -\sum_{i} W_{\text{face}i} (p_{\text{face}i} - p_{\text{perforation}}).$

Generic calculation of W_{facei} .

SINTEF

Multiscale mixed/mimetic method Well modeling: Individual layers from SPE10 (Christie and Blunt, 2001)

5-spot: 1 rate constr. injector, 4 pressure constr. producers **Well model:** Interface pressures employed.

Multiscale mixed/mimetic method Layer 36 from SPE10 model 2 (Christie and Blunt, 2001).

Example: Layer 36 from SPE10 (Christie and Blunt, 2001).

Pressure field computed with mimetic FDM

Velocity field computed with mimetic FDM

Pressure field computed with 4M

Velocity field computed with 4M

Primary features

- Coarse pressure solution, subgrid resolution at well locations.
- Coarse velocity solution with subgrid resolution everywhere.

Multiscale mixed/mimetic method Application 1: Fast reservoir simulation on geomodels

Model: SPE10 model 2, 1.1 M cells, 1 injector, 4 producers.

🕥 SINTEF

Multiscale mixed/mimetic method Application 2: Near-well modeling / improved well-model

Krogstad and Durlofsky, 2007:

Fine grid to annulus, block for each well segment

- No well model needed.
- Drift-flux wellbore flow.

Stenerud, Kippe, Datta-Gupta, and Lie, RSS 2007:

- 1 million cells, 32 injectors, and 69 producers
- Matching travel-time and water-cut amplitude at producers
- Permeability updated in blocks with high average sensitivity
 Only few multiscale basis functions updated.

Computation time: \sim 17 min. on desktop PC. (6 iterations).

Multiscale mixed/mimetic method:

- Reservoir simulation tool that can take geomodels as input.
- Solutions in close correspondence with solutions obtained by solving the pressure equation directly.
- Computational cost comparable to flow based upscaling.

Applications:

- Reservoir simulation on geomodels
- Near-well modeling / Improved well models
- History matching on geomodels

Coarsening of three-dimensional structured and unstructured grids for subsurface flow

Collaborators:

Vera Louise Hauge, SINTEF ICT Yalchin Efendiev, Texas A&M **Task:** Given ability to model velocity on geomodels, and transport on coarse grids:

Find a suitable coarse grid that resolves flow patterns and minimize accuracy loss.

Logarithm of permeability: Layer 37 in SPE10

Logarithm of velocity on non-uniform coarse grid: 208 cells

Logarithm of velocity on geomodel

Logarithm of velocity on Cartesian coarse grid: 220 cells

SINTEF

Generation of coarse grid for mass balance equations

Coarsening algorithm

- Separate regions with different magnitude of flow.
- **2** Combine small blocks with a neighboring block.
- Sefine blocks with too much flow.
- Repeat step 2.

Coarse grid: Initial step, 952 cells

Coarse grid: Step 3, 310 cells

Coarse grid: Step 2, 101 cells

Coarse grid: Final step, 208 cells

Example: Layer 37 SPE10 (Christie and Blunt), 5 spot well pattern.

Grid generation procedure Example: Layer 1 SPE10 (Christie and Blunt), 5 spot well pattern

Separate: Define $g = \ln |v|$ and $D = (\max(g) - \min(g))/10$.

Region
$$i = \{c : \min(g) + (i - 1)D < g(c) < \min(g) + iD\}.$$

Initial grid: connected subregions — 733 blocks

Grid generation procedure Example: Layer 1 SPE10 (Christie and Blunt), 5 spot well pattern

Separate: Define $g = \ln |v|$ and $D = (\max(g) - \min(g))/10$.

Region
$$i = \{c : \min(g) + (i - 1)D < g(c) < \min(g) + iD\}.$$

Initial grid: connected subregions — 733 blocks

Merge: If |B| < c, merge B with a neighboring block B' with

$$\frac{1}{|B|}\int_B \ln |v| dx \approx \frac{1}{|B'|}\int_{B'} \ln |v| \, dx$$

Carse grid: Step 2 Step 2: 203 blocks

Refine: If criteria — $\int_B \ln |v| dx < C$ — is violated, do

- Start at ∂B and build new blocks B' that meet criteria.
- Define $B = B \setminus B'$ and progress inwards until B meets criteria.

Step3: 914 blocks

Refine: If criteria — $\int_B \ln |v| dx < C$ — is violated, do

- Start at ∂B and build new blocks B' that meet criteria.
- Define $B = B \setminus B'$ and progress inwards until B meets criteria.

Cleanup: Merge small blocks with adjacent block.

Layer 68 SPE10, 5 spot well pattern

Logarithm of permeability: Layer 68

Geomodel: 13200 cells

Logarithm of velocity on geomodel

Logarithm of velocity on Cartesian coarse grid

Coarse grid: 660 cells

Logarithm of velocity on non-uniform coarse grid

Coarse grid: 649 cells

Coarse grid: 264 cells

Logarithm of velocity on non-uniform coarse grid

Coarse grid: 257 cells

Experimental setup:

Model: Incompressible two-phase flow (oil and water).

Initial state: Completely oil-saturated.

Relative permeability: $k_{rj} = s_j^2$, $0 \le s_j \le 1$.

Viscosity ratio: $\mu_o/\mu_w = 10$.

Error measures: (Time measured in PVI) Saturation error: $e(S) = \int_0^1 \frac{\|S(\cdot,t) - S_{ref}(\cdot,t)\|_{L^1(\Omega)}}{\|S_{ref}(\cdot,t)\|_{L^1(\Omega)}} dt.$ Water-cut error: $e(w) = \|w - w_{ref}\|_{L^2([0,1])} / \|w_{ref}\|_{L^2([0,1])}.$

< 🗆 🕨

Example 1: Geomodel = individual layers from SPE10 $_{5-\text{spot well pattern, upscaling factor}} \sim 20$

Geomodel: $60 \times 220 \times 1$

 $\begin{array}{ll} \text{Uniform} & \text{grid:} \\ 15 \times 44 \times 1 \end{array}$

Non-uni. grid: 619–734 blocks

< □ →

Observations:

- First 35 layers smooth \Rightarrow Uniform grid adequate.
- Last 50 layers fluvial \Rightarrow Uniform grid inadequate.
- Non-uniform grid gives consistent results for all layers.

Example 2: Geomodel = unstructured corner-point grid 20 realizations from lognormal distribution, Q-of-5-spot well pattern, upsc. factor ~ 25

Observations:

- Coarsening algorithm applicable to unstructured grids
 - accuracy consistent with observations for SPE10 models.
- Results obtained with uniform grid (in index space) inaccurate.

Example 3: Geomodel = four bottom layers from SPE10

Robustness with respect to degree of coarsening, 5-spot well pattern

Observations:

- Non-uniform grid gives better accuracy than uniform grid.
- Water-cut error almost grid-independent for non-uniform grid.

Example 4: Geomodel = four bottom layers from SPE10

Robustness with respect to well configuration, upscaling factor ~ 40

Non-uniform grid gives better accuracy than uniform grid
— substantial difference in water-cut error for all cases.

Example 5: Geomodel = four bottom layers from SPE10 Dependency on initial flow conditions, upscaling factor ~ 40

Grid generated with respective well patterns.

Grid generated with pattern C

< □ →

Observation:

Grid resolves high-permeable regions with good connectivity

- Grid need not be regenerated if well pattern changes.

Example 6: Geomodel = four bottom layers from SPE10 Robustness with respect changing well positions and well rates, upscaling factor ~ 40

0.9

0.8

0.7

0.6

0.5

0.3

0.2

0.1

5-spot, random prod. rates grid generated with equal rates

well patterns: 4 cycles A–E grid generated with pattern C $% \left({{E_{\rm{A}}} \right) = 0} \right)$

PVI

04

Reference solution

Non-uniform coarsening: e(w)=0.0273

0.9

0.8

Uniform coarsening: e(w)=0.0902

Water-cuts for case with changing well-configurations

Observations:

- NU water-cut tracks reference curve closely: 1%-3% error.
- \bullet Uniform grid gives $\sim 10\%$ water-cut error.

Conclusions

Flashback:

- A generic semi-automated algorithm for generating coarse grids that resolve flow patterns has been presented.
- Solutions are significantly more accurate than solutions obtained on uniform coarse grids with similar number of cells.
- Water-cut error: 1%-3% pseudofunctions superfluous.
- Grid need **not** be regenerated when flow conditions change!

Potential application:

User-specified grid-resolution to fit available computer resources.

Relation to other methods:

Belongs to family of flow-based grids^a: designed for flow scenarios where heterogeneity, rather than gravity, dominates flow patterns.

^aGarcia, Journel, Aziz (1990,1992), Durlofsky, Jones, Milliken (1994,1997)

I have a dream ...

< 🗆 🕨