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Nature’s input

=⇒

Plausible flow scenario
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Motivation

Today:

Geomodels too large and complex for flow simulation:
Upscaling performed to obtain

Simulation grid(s).

Effective parameters and pseudofunctions.

Reservoir simulation workflow

Geomodel

−→
Upscaling

−→
Flow simulation

−→
Management

Tomorrow:

Earth Model shared between geologists and reservoir engineers —
Simulators take Earth Model as input, users specify grid-resolution
to fit available computer resources and project requirements.
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Objective and implication

Main objective:

Build a generic framework for reservoir modeling and simulation
capable of taking geomodels as input.

– generic: one implementation applicable to all types of models.

Value: Improved modeling and simulation workflows.

Geologists may perform simulations to validate geomodel.

Reservoir engineers gain understanding of geomodeling.

Facilitate use of geomodels in reservoir management.
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Simulation model and solution strategy
Three-phase black-oil model

Equations:

Pressure equation

ct
∂po

dt +∇·v+
∑

j cjvj ·∇po = q

Mass balance equation
for each component

Primary variables:

Darcy velocity v

Liquid pressure po

Phase saturations sj ,
aqueous, liquid, vapor.

Solution strategy: Iterative sequential

vν+1 = v(sj,ν),
po,ν+1 = po(sj,ν),

sj,ν+1 = sj(po,ν+1, vν+1).

(Fully implicit with fixed point rather than Newton iteration).

Advantages with sequential solution strategy:

Grid for pressure and mass balance equations may be different.

Multiscale methods may be used to solve pressure equation.

Pressure eq. allows larger time-steps than mass balance eqs.
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Discretization

Pressure equation:

Solution grid: Geomodel — no effective parameters.

Discretization: Multiscale mixed / mimetic method

Coarse grid:
obtained by
up-gridding in
index space

Mass balance equations:

Solution grid: Non-uniform coarse grid.

Discretization: Two-scale upstream weighted FV method
— integrals evaluated on geomodel.

Pseudofunctions: No.
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Multiscale mixed/mimetic method
— same implementation for all types of grids

Multiscale mixed/mimetic method (4M)
Generic two-scale approach to discretizing the pressure equation:

Mixed FEM formulation on coarse grid.

Flow patterns resolved on geomodel with mimetic FDM.
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Multiscale mixed/mimetic method
Flow based upscaling versus multiscale method

Standard upscaling:

⇓

⇑

Coarse grid blocks:⇓

⇑

Flow problems:

Multiscale method (4M):

⇓

⇑

Coarse grid blocks:

⇓

⇑

Flow problems:
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Multiscale mixed/mimetic method
Hybrid formulation of pressure equation: No-flow boundary conditions

Discrete hybrid formulation: (u, v)m =
∫
Tm

u · v dx

Find v ∈ V , p ∈ U , π ∈ Π such that for all blocks Tm we have

(λ−1v, u)m − (p,∇ · u)m +
∫
∂Tm

πu · nds = (ωg∇D,u)m

(ct
∂po

dt , l)m + (∇ · v, l)m + (
∑

j cjvj · ∇po, l)m = (q, l)m∫
∂Tm

µv · nds = 0.

for all u ∈ V , l ∈ U and µ ∈ Π.

Solution spaces and variables: T = {Tm}

V ⊂ Hdiv(T ), U = P0(T ), Π = P0({∂Tm ∩ ∂Tn}).
v = velocity, p = block pressures, π = interface pressures.
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Multiscale mixed/mimetic method
Coarse grid

Each coarse grid block is a connected set of cells from geomodel.

Example: Coarse grid obtained with uniform coarsening in index space.

Grid adaptivity at well locations:

One block assigned to each cell in geomodel with well perforation.
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Multiscale mixed/mimetic method
Basis functions for modeling the velocity field

Definition of approximation space for velocity:

The approximation space V is spanned by basis functions ψi
m that

are designed to embody the impact of fine-scale structures.

Definition of basis functions:

For each pair of adjacent blocks Tm and Tn, define ψ by

ψ = −K∇u in Tm ∪ Tn,
ψ · n = 0 on ∂(Tm ∪ Tn),

∇ · ψ =

{
wm in Tm,

−wn in Tn,

Split ψ: ψi
m = ψ|Tm , ψj

n = −ψ|Tn .

Basis functions time-independent if wm is time-independent.
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Multiscale mixed/mimetic method
Choice of weight functions

Role of weight functions

Let (wm, 1)m = 1 and let vi
m be coarse-scale coefficients.

v =
∑
m,i

vi
mψ

i
m ⇒ (∇ · v)|Tm = wm

∑
i

vi
m.

−→ wm gives distribution of ∇ · v among cells in geomodel.

Choice of weight functions

∇ · v ∼ ct
∂po

dt
+

∑
j

cjvj · ∇po

Use adaptive criteria to decide when to redefine wm.

Use wm = φ (ct ∼ φ when saturation is smooth).

−→ Basis functions computed once, or updated infrequently.
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Multiscale mixed/mimetic method
Workflow

At initial time

Detect all adjacent blocks Compute ψ for each domainHomogeneous medium Heterogeneous medium

For each time-step:

Assemble and solve coarse grid system.

Recover fine grid velocity.

Solve mass balance equations.
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Multiscale mixed/mimetic method
Subgrid discretization: Mimetic finite difference method (FDM)

Velocity basis functions computed using mimetic FDM

Mixed FEM for which the inner product (u, σv) is replaced with an
approximate explicit form (u, v ∈ Hdiv and σ SPD),
— no integration, no reference elements, no Piola mappings.

May also be interpreted as a multipoint finite volume method.

Properties:

Exact for linear pressure.

Same implementation applies to all grids.

Mimetic inner product needed to evaluate terms in multiscale
formulation, e.g., (ψi

m, λ
−1ψj

m) and (ωg∇D,ψm,j).
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Multiscale mixed/mimetic method
Mimetic finite difference method vs. Two-point finite volume method

Two-point FD method is “generic”, but ...

Example:

Homogeneous+isotropic,
symmetric well pattern
−→ equal water-cut.

Two-point method + skewed grids
= grid orientation effects.

Two-point FV method Mimetic FD method
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Multiscale mixed/mimetic method
Well modeling

Grid block for cells with a well
correct well-block pressure

no near well upscaling

free choice of well model.

Alternative well models

1 Peaceman model:

qperforation = −Wblock(pblock − pperforation).

Calculation of well-index grid dependent.

2 Exploit pressures on grid interfaces:

qperforation = −
∑

iWfacei(pfacei − pperforation).

Generic calculation of Wfacei.
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Multiscale mixed/mimetic method
Well modeling: Individual layers from SPE10 (Christie and Blunt, 2001)

5-spot: 1 rate constr. injector, 4 pressure constr. producers
Well model: Interface pressures employed.

Distribution of
production rates

— Reference
(60× 220)

— Multiscale
(10× 22)
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Multiscale mixed/mimetic method
Layer 36 from SPE10 model 2 (Christie and Blunt, 2001).

Example: Layer 36 from SPE10 (Christie and Blunt, 2001).

Primary features

Coarse pressure solution, subgrid resolution at well locations.

Coarse velocity solution with subgrid resolution everywhere.
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Multiscale mixed/mimetic method
Application 1: Fast reservoir simulation on geomodels

Model: SPE10 model 2, 1.1 M cells, 1 injector, 4 producers.

Coarse grid:
5× 11× 17

— Reference

— 4M

— Upscaling +
downscaling

4M+streamlines:
∼ 2 minutes on
desktop PC.

Water-cut curves at producers A–D
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Multiscale mixed/mimetic method
Application 2: Near-well modeling / improved well-model

Krogstad and Durlofsky, 2007:

Fine grid to annulus,
block for each well segment

No well model needed.

Drift-flux wellbore flow.
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Multiscale mixed/mimetic method
Application 3: History matching on geological models

Stenerud, Kippe, Datta-Gupta, and Lie, RSS 2007:

1 million cells, 32 injectors, and 69 producers

Matching travel-time and water-cut amplitude at producers

Permeability updated in blocks with high average sensitivity
−→ Only few multiscale basis functions updated.

Time-residual Amplitude-residual

Computation time: ∼ 17 min. on desktop PC. (6 iterations).
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Conclusions

Multiscale mixed/mimetic method:

Reservoir simulation tool that can take geomodels as input.

Solutions in close correspondence with solutions obtained by
solving the pressure equation directly.

Computational cost comparable to flow based upscaling.

Applications:

Reservoir simulation on geomodels

Near-well modeling / Improved well models

History matching on geomodels
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Coarsening of three-dimensional structured and
unstructured grids for subsurface flow

Collaborators:

Vera Louise Hauge,
SINTEF ICT

Yalchin Efendiev,
Texas A&M

Task: Given ability to model velocity on
geomodels, and transport on coarse grids:

Find a suitable coarse grid that resolves
flow patterns and minimize accuracy loss.
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Generation of coarse grid for mass balance equations

Coarsening algorithm

1 Separate regions with different magnitude of flow.

2 Combine small blocks with a neighboring block.

3 Refine blocks with too much flow.

4 Repeat step 2.

Example: Layer 37 SPE10 (Christie and Blunt), 5 spot well pattern.
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Grid generation procedure
Example: Layer 1 SPE10 (Christie and Blunt), 5 spot well pattern

Separate: Define g = ln |v| and D = (max(g)−min(g))/10.

Region i = {c : min(g) + (i− 1)D < g(c) < min(g) + iD}.

Initial grid:
connected subregions
— 733 blocks

Merge: If |B| < c, merge B with a neighboring block B′ with

1

|B|

∫
B

ln |v|dx ≈ 1

|B′|

∫
B′

ln |v| dx

Step 2: 203 blocks
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Grid generation procedure
Example: Layer 1 SPE10 (Christie and Blunt), 5 spot well pattern

Refine: If criteria —
∫
B ln |v|dx < C — is violated, do

Start at ∂B and build new blocks B′ that meet criteria.

Define B = B\B′ and progress inwards until B meets criteria.

Step3: 914 blocks

Cleanup: Merge small blocks with adjacent block.

Final grid: 690 blocks
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Layer 68 SPE10, 5 spot well pattern

Geomodel: 13200 cells

Coarse grid: 660 cells Coarse grid: 649 cells

Coarse grid: 264 cells Coarse grid: 257 cells
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Numerical examples
Performance studies

Experimental setup:

Model: Incompressible two-phase flow (oil and water).

Initial state: Completely oil-saturated.

Relative permeability: krj = s2j , 0 ≤ sj ≤ 1.

Viscosity ratio: µo/µw = 10.

Error measures: (Time measured in PVI)

Saturation error: e(S) =
∫ 1
0

‖S(·,t)−Sref(·,t)‖L1(Ω)

‖Sref(·,t)‖L1(Ω)
dt.

Water-cut error: e(w) = ‖w − wref‖L2([0,1])/‖wref‖L2([0,1]).
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Example 1: Geomodel = individual layers from SPE10
5-spot well pattern, upscaling factor ∼ 20
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Non−uniform coarsening
Uniform coarsening

Non−uniform coarsening
Uniform coarsening Geomodel:

60× 220× 1

Uniform grid:
15× 44× 1

Non-uni. grid:
619–734 blocks

Observations:

First 35 layers smooth ⇒ Uniform grid adequate.

Last 50 layers fluvial ⇒ Uniform grid inadequate.

Non-uniform grid gives consistent results for all layers.
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Example 2: Geomodel = unstructured corner-point grid
20 realizations from lognormal distribution, Q-of-5-spot well pattern, upsc. factor ∼ 25
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Non−uniform coarsening
Uniform coarsening

Non−uniform coarsening
Uniform coarsening

⇐ 2 realizations.
Geomodel:
15206 cells

Uniform grid:
838 blocks

Non-uni. grid:
647–704 blocks

Observations:

Coarsening algorithm applicable to unstructured grids
— accuracy consistent with observations for SPE10 models.

Results obtained with uniform grid (in index space) inaccurate.
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Example 3: Geomodel = four bottom layers from SPE10
Robustness with respect to degree of coarsening, 5-spot well pattern

Number of cells in grid (upscaling factor 4–400)

Uniform grid 30x110x4 20x55x4 15x44x2 10x22x2 6x22x1
13200 4400 1320 440 132

Non-U. grid 7516 3251 1333 419 150

30x110x4 20x55x4 15x44x2 10x22x2 6x22x1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Average saturation error
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Non−uniform coarsening
Uniform coarsening

Non−uniform coarsening
Uniform coarsening

Observations:

Non-uniform grid gives better accuracy than uniform grid.

Water-cut error almost grid-independent for non-uniform grid.
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Example 4: Geomodel = four bottom layers from SPE10
Robustness with respect to well configuration, upscaling factor ∼ 40

A B C

ED
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Wellpatterns

A (1333) B (1355) C (1348) D (1347) E (1337)
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Average saturation error

 

 
Non−uniform coarsening
Uniform coarsening

A (1333) B (1355) C (1348) D (1347) E (1337)
0

0.05

0.1

0.15
Water−cut error

 

 
Non−uniform coarsening
Uniform coarsening Uniform grid:

15× 44× 2

Non-uniform grid
∼ 1320 blocks

Non-uniform grid gives better accuracy than uniform grid
— substantial difference in water-cut error for all cases.
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Example 5: Geomodel = four bottom layers from SPE10
Dependency on initial flow conditions, upscaling factor ∼ 40

Grid generated
with respective
well patterns.

Grid generated
with pattern C.
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Observation:
Grid resolves high-permeable regions with good connectivity
— Grid need not be regenerated if well pattern changes.
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Example 6: Geomodel = four bottom layers from SPE10
Robustness with respect changing well positions and well rates, upscaling factor ∼ 40
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Reference solution
Non−uniform coarsening: e(w)=0.0273
Uniform coarsening: e(w)=0.0902

5-spot, random prod. rates well patterns: 4 cycles A–E
grid generated with equal rates grid generated with pattern C

Observations:

NU water-cut tracks reference curve closely: 1%–3% error.

Uniform grid gives ∼ 10% water-cut error.
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Conclusions

Flashback:

A generic semi-automated algorithm for generating coarse
grids that resolve flow patterns has been presented.

Solutions are significantly more accurate than solutions
obtained on uniform coarse grids with similar number of cells.

Water-cut error: 1%–3% — pseudofunctions superfluous.

Grid need not be regenerated when flow conditions change!

Potential application:

User-specified grid-resolution to fit available computer resources.

Relation to other methods:

Belongs to family of flow-based gridsa: designed for flow scenarios
where heterogeneity, rather than gravity, dominates flow patterns.

aGarcia, Journel, Aziz (1990,1992), Durlofsky, Jones, Milliken (1994,1997)
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I have a dream ...
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