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Motivation

Today:

Geomodels too large and complex for flow simulation:
Upscaling performed to obtain

Simulation grid(s).

Effective parameters and pseudofunctions.

Reservoir simulation workflow

Geomodel

−→
Upscaling

−→
Flow simulation

−→
Management

Tomorrow:

Earth Model shared between geologists and reservoir engineers —
Simulators take Earth Model as input.
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Objective and implication

Main objective:

Build a generic multiscale pressure solver for reservoir modeling
and simulation capable of taking geomodels as input.

– generic: one implementation applicable to all types of models.

Value: Improved modeling and simulation workflows.

Geologists may perform simulations to validate geomodel.

Reservoir engineers gain understanding of geomodeling.

Facilitate use of geomodels in reservoir management.

Applied Mathematics 3/20



Simulation model and solution strategy
Three-phase black-oil model

Equations:

Pressure equation

ct
∂po

dt +∇·v+
∑

j cjvj ·∇po = q

Mass balance equation
for each component

Primary variables:

Darcy velocity v

Liquid pressure po

Phase saturations sj ,
aqueous, liquid, vapor.

Solution strategy: Iterative sequential

vν+1 = v(sj,ν),
po,ν+1 = po(sj,ν),

sj,ν+1 = sj(po,ν+1, vν+1).

(Fully implicit with fixed point rather than Newton iteration).

Advantages with sequential solution strategy:

Grid for pressure and mass balance equations may be different.

Multiscale methods may be used to solve pressure equation.

Pressure eq. allows larger time-steps than mass balance eqs.
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Multiscale mixed/mimetic method
— same implementation for all types of grids

Multiscale mixed/mimetic method (4M)
Generic two-scale approach to discretizing the pressure equation:

Mixed FEM formulation on coarse grid.

Flow patterns resolved on geomodel with mimetic FDM.
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Multiscale mixed/mimetic method
Flow based upscaling versus multiscale method

Standard upscaling:

⇓

⇑

Coarse grid blocks:⇓

⇑

Flow problems:

Multiscale method (4M):

⇓

⇑

Coarse grid blocks:

⇓

⇑

Flow problems:
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Multiscale mixed/mimetic method
Hybrid formulation of pressure equation: No-flow boundary conditions

Discrete hybrid formulation: (u, v)m =
∫
Tm

u · v dx

Find v ∈ V , p ∈ U , π ∈ Π such that for all blocks Tm we have

(λ−1v, u)m − (p,∇ · u)m +
∫
∂Tm

πu · nds = (ωg∇D,u)m

(ct
∂po

dt , l)m + (∇ · v, l)m + (
∑

j cjvj · ∇po, l)m = (q, l)m∫
∂Tm

µv · nds = 0.

for all u ∈ V , l ∈ U and µ ∈ Π.

Solution spaces and variables: T = {Tm}

V ⊂ Hdiv(T ), U = P0(T ), Π = P0({∂Tm ∩ ∂Tn}).
v = velocity, p = block pressures, π = interface pressures.
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Multiscale mixed/mimetic method
Coarse grid

Each coarse grid block is a connected set of cells from geomodel.

Example: Coarse grid obtained with uniform coarsening in index space.

Grid adaptivity at well locations:

One block assigned to each cell in geomodel with well perforation.
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Multiscale mixed/mimetic method
Basis functions for modeling the velocity field

Definition of approximation space for velocity:

The approximation space V is spanned by basis functions ψi
m that

are designed to embody the impact of fine-scale structures.

Definition of basis functions:

For each pair of adjacent blocks Tm and Tn, define ψ by

ψ = −K∇u in Tm ∪ Tn,
ψ · n = 0 on ∂(Tm ∪ Tn),

∇ · ψ =

{
wm in Tm,

−wn in Tn,

Split ψ: ψi
m = ψ|Tm , ψj

n = −ψ|Tn .

Basis functions time-independent if wm is time-independent.
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Multiscale mixed/mimetic method
Choice of weight functions

Role of weight functions

Let (wm, 1)m = 1 and let vi
m be coarse-scale coefficients.

v =
∑
m,i

vi
mψ

i
m ⇒ (∇ · v)|Tm = wm

∑
i

vi
m.

−→ wm gives distribution of ∇ · v among cells in geomodel.

Choice of weight functions

∇ · v ∼ ct
∂po

dt
+

∑
j

cjvj · ∇po

Use adaptive criteria to decide when to redefine wm.

Use wm = φ (ct ∼ φ when saturation is smooth).

−→ Basis functions computed once, or updated infrequently.
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Multiscale mixed/mimetic method
Workflow

At initial time

Detect all adjacent blocks Compute ψ for each domainHomogeneous medium Heterogeneous medium

For each time-step:

Assemble and solve coarse grid system.

Recover fine grid velocity.

Solve mass balance equations.
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Multiscale mixed/mimetic method
Subgrid discretization: Mimetic finite difference method (FDM)

Velocity basis functions computed using mimetic FDM

Mixed FEM for which the inner product (u, σv) is replaced with an
approximate explicit form (u, v ∈ Hdiv and σ SPD),
— no integration, no reference elements, no Piola mappings.

May also be interpreted as a multipoint finite volume method.

Properties:

Exact for linear pressure.

Same implementation applies to all grids.

Mimetic inner product needed to evaluate terms in multiscale
formulation, e.g., (ψi

m, λ
−1ψj

m) and (ωg∇D,ψm,j).
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Multiscale mixed/mimetic method
Mimetic finite difference method vs. Two-point finite volume method

Two-point FD method is “generic”, but ...

Example:

Homogeneous+isotropic,
symmetric well pattern
−→ equal water-cut.

Two-point method + skewed grids
= grid orientation effects.

Two-point FV method Mimetic FD method
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Multiscale mixed/mimetic method
Well modeling

Grid block for cells with a well
correct well-block pressure

no near well upscaling

free choice of well model.

Alternative well models

1 Peaceman model:

qperforation = −Wblock(pblock − pperforation).

Calculation of well-index grid dependent.

2 Exploit pressures on grid interfaces:

qperforation = −
∑

iWfacei(pfacei − pperforation).

Generic calculation of Wfacei.
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Multiscale mixed/mimetic method
Well modeling: Individual layers from SPE10 (Christie and Blunt, 2001)

5-spot: 1 rate constr. injector, 4 pressure constr. producers
Well model: Interface pressures employed.

Distribution of
production rates

— Reference
(60× 220)

— Multiscale
(10× 22)
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Multiscale mixed/mimetic method
Layer 36 from SPE10 model 2 (Christie and Blunt, 2001).

Example: Layer 36 from SPE10 (Christie and Blunt, 2001).

Primary features

Coarse pressure solution, subgrid resolution at well locations.

Coarse velocity solution with subgrid resolution everywhere.
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Multiscale mixed/mimetic method
Application 1: Fast reservoir simulation on geomodels

Model: SPE10 model 2, 1.1 M cells, 1 injector, 4 producers.

Coarse grid:
5× 11× 17

— Reference

— 4M

— Upscaling +
downscaling

4M+streamlines:
∼ 2 minutes on
desktop PC.

Water-cut curves at producers A–D
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Multiscale mixed/mimetic method
Application 2: Near-well modeling / improved well-model

Krogstad and Durlofsky, 2007:

Fine grid to annulus,
block for each well segment

No well model needed.

Drift-flux wellbore flow.
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Multiscale mixed/mimetic method
Application 3: History matching on geological models

Stenerud, Kippe, Datta-Gupta, and Lie, RSS 2007:

1 million cells, 32 injectors, and 69 producers

Matching travel-time and water-cut amplitude at producers

Permeability updated in blocks with high average sensitivity
−→ Only few multiscale basis functions updated.

Time-residual Amplitude-residual

Computation time: ∼ 17 min. on desktop PC. (6 iterations).
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Conclusions

Multiscale mixed/mimetic method:

Reservoir simulation tool that can take geomodels as input.

Solutions in close correspondence with solutions obtained by
solving the pressure equation directly.

Computational cost comparable to flow based upscaling.

Applications:

Reservoir simulation on geomodels

Near-well modeling / Improved well models

History matching on geomodels

Potential value for industry:

Improved modeling and simulation workflows.
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