Multiscale mixed/mimetic methods – Generic tools for reservoir modeling and simulation

Jørg E. Aarnes, Stein Krogstad and Knut-Andreas Lie SINTEF ICT, Oslo, Norway

Nature's input

Predicted production

Today:

Geomodels too large and complex for flow simulation: Upscaling performed to obtain

- Simulation grid(s).
- Effective parameters and pseudofunctions.

Reservoir simulation workflow

Tomorrow:

Earth Model shared between geologists and reservoir engineers — Simulators take Earth Model as input.

Main objective:

Build a generic multiscale pressure solver for reservoir modeling and simulation capable of taking geomodels as input.

- generic: one implementation applicable to all types of models.

Value: Improved modeling and simulation workflows.

- Geologists may perform simulations to validate geomodel.
- Reservoir engineers gain understanding of geomodeling.
- Facilitate use of geomodels in reservoir management.

Simulation model and solution strategy

Three-phase black-oil model

Equations:

• Pressure equation

$$c_t \frac{\partial p_o}{dt} + \nabla \cdot v + \sum_j c_j v_j \cdot \nabla p_o = q$$

• Mass balance equation for each component

Solution strategy: Iterative sequential

Primary variables:

- Darcy velocity \boldsymbol{v}
- Liquid pressure p_o
- Phase saturations s_j, aqueous, liquid, vapor.

$$\begin{array}{rcl} v_{\nu+1} &=& v(s_{j,\nu}), \\ p_{o,\nu+1} &=& p_o(s_{j,\nu}), \end{array} \qquad s_{j,\nu+1} = s_j(p_{o,\nu+1},v_{\nu+1}). \end{array}$$

(Fully implicit with fixed point rather than Newton iteration).

Simulation model and solution strategy

Three-phase black-oil model

Equations:

• Pressure equation

$$c_t \frac{\partial p_o}{dt} + \nabla \cdot v + \sum_j c_j v_j \cdot \nabla p_o = q$$

• Mass balance equation for each component

Primary variables:

- Darcy velocity v
- Liquid pressure p_o
- Phase saturations s_j, aqueous, liquid, vapor.

Solution strategy: Iterative sequential

$$\begin{array}{rcl} v_{\nu+1} &=& v(s_{j,\nu}), \\ p_{o,\nu+1} &=& p_o(s_{j,\nu}), \end{array} & s_{j,\nu+1} = s_j(p_{o,\nu+1},v_{\nu+1}). \end{array}$$

(Fully implicit with fixed point rather than Newton iteration).

Advantages with sequential solution strategy:

- Grid for pressure and mass balance equations may be different.
- Multiscale methods may be used to solve pressure equation.
- Pressure eq. allows larger time-steps than mass balance eqs.

Multiscale mixed/mimetic method (4M)

Generic two-scale approach to discretizing the pressure equation:

- Mixed FEM formulation on coarse grid.
- Flow patterns resolved on geomodel with mimetic FDM.

Standard upscaling:

< □ →

Standard upscaling:

Coarse grid blocks:

-	-	-	

Standard upscaling:

Coarse grid blocks:

Flow problems:

Standard upscaling:

Coarse grid blocks:

Flow problems:

() SINTEF

< □ →

Standard upscaling:

Coarse grid blocks:

Flow problems:

< □ →

Standard upscaling:

Coarse grid blocks:

Flow problems:

< □ →

Standard upscaling:

↓ ↑

Coarse grid blocks:

↓ ↑

Flow problems:

Multiscale method (4M):

() SINTEF

Standard upscaling:

↓ ↑

Flow problems:

() SINTEF

Multiscale method (4M):

 \Downarrow

Coarse grid blocks:

↓ Flow problems:

q=1

Applied Mathematics

Standard upscaling:

↓ ↑

Flow problems:

() SINTEF

Multiscale method (4M):

Coarse grid blocks:

q#-1

↓ ↑

Flow problems:

Applied Mathematics

Standard upscaling:

↓ ↑

Flow problems:

() SINTEF

Multiscale method (4M):

↓ ↑

Coarse grid blocks:

q#-1

↓ ↑

Flow problems:

Applied Mathematics

Discrete hybrid formulation: $(u, v)_m = \int_{T_m} u \cdot v \, dx$

Find $v \in V$, $p \in U$, $\pi \in \Pi$ such that for all blocks T_m we have

$$\begin{aligned} &(\lambda^{-1}v, u)_m - (p, \nabla \cdot u)_m + \int_{\partial T_m} \pi u \cdot n \, ds &= (\omega g \nabla D, u)_m \\ &(c_t \frac{\partial p_o}{dt}, l)_m + (\nabla \cdot v, l)_m + (\sum_j c_j v_j \cdot \nabla p_o, l)_m &= (q, l)_m \\ &\int_{\partial T_m} \mu v \cdot n \, ds &= 0. \end{aligned}$$

for all $u \in V$, $l \in U$ and $\mu \in \Pi$.

Solution spaces and variables: $\mathcal{T} = \{T_m\}$ $V \subset H^{\text{div}}(\mathcal{T}), \quad U = \mathcal{P}_0(\mathcal{T}), \quad \Pi = \mathcal{P}_0(\{\partial T_m \cap \partial T_n\}).$ $v = \text{velocity}, \quad p = \text{block pressures}, \quad \pi = \text{interface pressures}.$

Multiscale mixed/mimetic method Coarse grid

Each coarse grid block is a connected set of cells from geomodel. **Example:** Coarse grid obtained with uniform coarsening in index space.

Grid adaptivity at well locations:

One block assigned to each cell in geomodel with well perforation.

Definition of approximation space for velocity:

The approximation space V is spanned by basis functions ψ_m^i that are designed to embody the impact of fine-scale structures.

Definition of basis functions:

For each pair of adjacent blocks T_m and T_n , define ψ by

$$\begin{split} \psi &= -K \nabla u \text{ in } T_m \cup T_n, \\ \psi \cdot n &= 0 \text{ on } \partial (T_m \cup T_n), \end{split} \qquad \nabla \cdot \psi = \begin{cases} w_m & \text{ in } T_m, \\ -w_n & \text{ in } T_n, \end{cases} \end{split}$$

Split ψ : $\psi_m^i = \psi|_{T_m}, \quad \psi_n^j = -\psi|_{T_n}.$

Basis functions time-independent if w_m is time-independent.

() SINTEF

< 🗆 🕨

Multiscale mixed/mimetic method Choice of weight functions

Role of weight functions

Let $(w_m, 1)_m = 1$ and let v_m^i be coarse-scale coefficients.

$$v = \sum_{m,i} v_m^i \psi_m^i \quad \Rightarrow \quad (\nabla \cdot v)|_{T_m} = w_m \sum_i v_m^i.$$

 $\longrightarrow w_m$ gives distribution of $\nabla \cdot v$ among cells in geomodel.

Choice of weight functions

$$\nabla \cdot v \sim c_t \frac{\partial p_o}{dt} + \sum_j c_j v_j \cdot \nabla p_o$$

• Use adaptive criteria to decide when to redefine w_m .

• Use $w_m = \phi$ ($c_t \sim \phi$ when saturation is smooth).

\longrightarrow Basis functions computed once, or updated infrequently.

Multiscale mixed/mimetic method Workflow

At initial time Detect all adjacent blocks Compute ψ for each domain

For each time-step:

- Assemble and solve coarse grid system.
- Recover fine grid velocity.
- Solve mass balance equations.

Velocity basis functions computed using mimetic FDM

Mixed FEM for which the inner product $(u, \sigma v)$ is replaced with an approximate explicit form $(u, v \in H^{\text{div}} \text{ and } \sigma \text{ SPD})$,

- no integration, no reference elements, no Piola mappings.

May also be interpreted as a multipoint finite volume method.

Properties:

- Exact for linear pressure.
- Same implementation applies to all grids.
- Mimetic inner product *needed* to evaluate terms in multiscale formulation, e.g., $(\psi_m^i, \lambda^{-1}\psi_m^j)$ and $(\omega g \nabla D, \psi_{m,j})$.

Multiscale mixed/mimetic method Mimetic finite difference method vs. Two-point finite volume method

Two-point FD method is "generic", but ...

Example:

Homogeneous+isotropic, symmetric well pattern \rightarrow equal water-cut.

Mimetic FD method

$\underset{\text{Well modeling}}{\text{Multiscale mixed}/\text{mimetic method}}$

Grid block for cells with a well

- correct well-block pressure
- no near well upscaling
- free choice of well model.

Alternative well models

Peaceman model:

 $q_{\text{perforation}} = -W_{\text{block}}(p_{\text{block}} - p_{\text{perforation}}).$

Calculation of well-index grid dependent.

Exploit pressures on grid interfaces:

 $q_{\text{perforation}} = -\sum_{i} W_{\text{face}i} (p_{\text{face}i} - p_{\text{perforation}}).$

Generic calculation of W_{facei} .

SINTEF

Multiscale mixed/mimetic method Well modeling: Individual layers from SPE10 (Christie and Blunt, 2001)

5-spot: 1 rate constr. injector, 4 pressure constr. producers **Well model:** Interface pressures employed.

Multiscale mixed/mimetic method Layer 36 from SPE10 model 2 (Christie and Blunt, 2001).

Example: Layer 36 from SPE10 (Christie and Blunt, 2001).

Pressure field computed with mimetic FDM

Velocity field computed with mimetic FDM

Pressure field computed with 4M

Velocity field computed with 4M

Primary features

- Coarse pressure solution, subgrid resolution at well locations.
- Coarse velocity solution with subgrid resolution everywhere.

Multiscale mixed/mimetic method Application 1: Fast reservoir simulation on geomodels

Model: SPE10 model 2, 1.1 M cells, 1 injector, 4 producers.

🕥 SINTEF

Multiscale mixed/mimetic method Application 2: Near-well modeling / improved well-model

Krogstad and Durlofsky, 2007:

Fine grid to annulus, block for each well segment

- No well model needed.
- Drift-flux wellbore flow.

Stenerud, Kippe, Datta-Gupta, and Lie, RSS 2007:

- 1 million cells, 32 injectors, and 69 producers
- Matching travel-time and water-cut amplitude at producers
- Permeability updated in blocks with high average sensitivity
 Only few multiscale basis functions updated.

Computation time: \sim 17 min. on desktop PC. (6 iterations).

Multiscale mixed/mimetic method:

- Reservoir simulation tool that can take geomodels as input.
- Solutions in close correspondence with solutions obtained by solving the pressure equation directly.
- Computational cost comparable to flow based upscaling.

Applications:

- Reservoir simulation on geomodels
- Near-well modeling / Improved well models
- History matching on geomodels

Potential value for industry:

Improved modeling and simulation workflows.

