## Coarsening of three-dimensional structured and unstructured grids for subsurface flow

### Jørg Espen Aarnes and Vera Louise Hauge SINTEF ICT, Norway Yalchin Efendiev Texas A&M University, Texas, USA



Logarithm of velocity on coarse grid



**Task:** Given ability to model velocity on geomodels, and transport on coarse grids:

Find a suitable coarse grid that resolves flow patterns and minimize accuracy loss.



### Today:

Geomodels too large and complex for flow simulation: Upscaling performed to obtain

- Simulation grid(s).
- Effective parameters and pseudofunctions.





### Tomorrow:

Earth Model shared between geologists and reservoir engineers — Simulators take Earth Model as input, users specify grid-resolution to fit available computer resources and project requirements.

### Main objective:

Develop a generic grid coarsening algorithm for reservoir simulation that resolves dominating flow patterns.

- generic: one implementation applicable to all types of grids.
- resolve flow patterns: separate high flow and low flow regions.

### Secondary objective:

Reduce the need for pseudofunctions.



### Simulation model and solution strategy

### Simulation model

Pressure equation and component mass-balance equations

• Darcy velocity v,

Primary variables:

- $\bullet$  Liquid pressure  $p_o,$
- Saturations  $s_j$ , j=aqueous, liquid, vapor.

Iterative sequential solution strategy:

$$\begin{array}{rcl} v_{\nu+1} &=& v(s_{j,\nu}), \\ p_{o,\nu+1} &=& p_o(s_{j,\nu}), \end{array} \qquad s_{j,\nu+1} = s_j(p_{o,\nu+1},v_{\nu+1}). \end{array}$$

(Fully implicit with fixed point rather than Newton iteration).



### Simulation model

Pressure equation and component mass-balance equations

• Darcy velocity v,

Primary variables:

- Liquid pressure  $p_o$ ,
- Saturations  $s_j$ , j=aqueous, liquid, vapor.

Iterative sequential solution strategy:

$$\begin{array}{rcl} v_{\nu+1} &=& v(s_{j,\nu}), \\ p_{o,\nu+1} &=& p_o(s_{j,\nu}), \end{array} & s_{j,\nu+1} = s_j(p_{o,\nu+1},v_{\nu+1}). \end{array}$$

(Fully implicit with fixed point rather than Newton iteration).

### Advantages with sequential solution strategy:

- Grid for pressure and mass balance equations may be different.
- Multiscale methods may be used to solve pressure equation.
- Pressure eq. allows larger time-steps than mass balance eqs.

### Pressure equation:

- Solution grid: Geomodel no effective parameters.
- Discretization: Multiscale mixed / mimetic method

**Coarse grid:** obtained by up-gridding in index space



### Mass balance equations:

- Solution grid: Non-uniform coarse grid.
- Discretization: Two-scale upstream weighted FV method
  - integrals evaluated on geomodel.
- Pseudofunctions: No.

## Generation of coarse grid for mass balance equations

### **Coarsening algorithm**

- Separate regions with different magnitude of flow.
- **2** Combine small blocks with a neighboring block.
- 8 Refine blocks with too much flow.
- Repeat step 2.



Example: Layer 1 SPE10 (Christie and Blunt), 5 spot well pattern.



### Grid generation procedure Example: Layer 1 SPE10 (Christie and Blunt), 5 spot well pattern

**Separate:** Define  $g = \ln |v|$  and  $D = (\max(g) - \min(g))/10$ .

Region 
$$i = \{c : \min(g) + (i - 1)D < g(c) < \min(g) + iD\}.$$



Initial grid: connected subregions — 733 blocks



### Grid generation procedure Example: Layer 1 SPE10 (Christie and Blunt), 5 spot well pattern

**Separate:** Define  $g = \ln |v|$  and  $D = (\max(g) - \min(g))/10$ .

Region 
$$i = \{c : \min(g) + (i - 1)D < g(c) < \min(g) + iD\}.$$



Initial grid: connected subregions — 733 blocks

Merge: If |B| < c, merge B with a neighboring block B' with

$$\frac{1}{|B|}\int_B \ln |v| dx \approx \frac{1}{|B'|}\int_{B'} \ln |v| \, dx$$

Coarse grid: Step 2 Step 2: 203 blocks



**Refine:** If criteria —  $\int_B \ln |v| dx < C$  — is violated, do

- Start at  $\partial B$  and build new blocks B' that meet criteria.
- Define  $B = B \setminus B'$  and progress inwards until B meets criteria.



Step3: 914 blocks



**Refine:** If criteria —  $\int_B \ln |v| dx < C$  — is violated, do

- Start at  $\partial B$  and build new blocks B' that meet criteria.
- Define  $B = B \setminus B'$  and progress inwards until B meets criteria.



### Cleanup: Merge small blocks with adjacent block.





## Example: Log of velocity magnitude on different grids

Logarithm of velocity on geomodel



Logarithm of velocity on coarse grid



Logarithm of velocity on Cartesian coarse grid





## Layer 68 SPE10, 5 spot well pattern

Logarithm of permeability: Layer 68



Geomodel: 13200 cells

Logarithm of velocity on geomodel



Logarithm of velocity on Cartesian coarse grid



Coarse grid: 660 cells

Logarithm of velocity on non-uniform coarse grid



Coarse grid: 649 cells



Coarse grid: 264 cells

Logarithm of velocity on non-uniform coarse grid



Coarse grid: 257 cells

### **Experimental setup:**

Model: Incompressible two-phase flow (oil and water).

Initial state: Completely oil-saturated.

**Relative permeability:**  $k_{rj} = s_j^2$ ,  $0 \le s_j \le 1$ .

Viscosity ratio:  $\mu_o/\mu_w = 10$ .

Error measures: (Time measured in PVI) Saturation error:  $e(S) = \int_0^1 \frac{\|S(\cdot,t) - S_{ref}(\cdot,t)\|_{L^1(\Omega)}}{\|S_{ref}(\cdot,t)\|_{L^1(\Omega)}} dt.$ Water-cut error:  $e(w) = \|w - w_{ref}\|_{L^2([0,1])} / \|w_{ref}\|_{L^2([0,1])}.$ 



## Example 1: Geomodel = individual layers from SPE10 $_{5-\text{spot well pattern, upscaling factor} \sim 20$



#### **Observations:**

- First 35 layers smooth  $\Rightarrow$  Uniform grid adequate.
- Last 50 layers fluvial  $\Rightarrow$  Uniform grid inadequate.
- Non-uniform grid gives consistent results for all layers.

# Example 2: Geomodel = stack of five layers from SPE10 $_{\text{5-spot well pattern, upscaling factor}}\sim100$



### **Observations:**

- Uniform grid inadequate, also for stacks from layers 1–35
  lognormal mean of permeability in layers varies significantly.
- Non-uniform grid gives consistent results for all stacks.

# Example 3: Geomodel = unstructured corner-point grid 20 realizations from lognormal distribution, Q-of-5-spot well pattern, upsc. factor $\sim 25$



### **Observations:**

- Coarsening algorithm applicable to unstructured grids
  - accuracy consistent with observations for SPE10 models.
- Results obtained with uniform grid (in index space) inaccurate.

## Example 4: Geomodel = four bottom layers from SPE10

Robustness with respect to degree of coarsening, 5-spot well pattern



### **Observations:**

- Non-uniform grid gives better accuracy than uniform grid.
- Water-cut error almost grid-independent for non-uniform grid.

## Example 5: Geomodel = four bottom layers from SPE10

Robustness with respect to well configuration, upscaling factor  $\sim 40$ 



Non-uniform grid gives better accuracy than uniform grid
— substantial difference in water-cut error for all cases.

## Example 6: Geomodel = four bottom layers from SPE10 Dependency on initial flow conditions, upscaling factor $\sim 40$

Grid generated with respective well patterns.

Grid generated with pattern C





< □ →

#### **Observation:**

Grid resolves high-permeable regions with good connectivity

- Grid need not be regenerated if well pattern changes.

# Example 7: Geomodel = four bottom layers from SPE10 Robustness with respect changing well positions and well rates, upscaling factor $\sim 40$

0.9

0.8

0.7

0.6

0.5

0.3

0.2

0.1



5-spot, random prod. rates grid generated with equal rates

# well patterns: 4 cycles A–E grid generated with pattern C $% \left( {{E_{\rm{A}}} \right) = 0} \right)$

PVI

04

Reference solution

Non-uniform coarsening: e(w)=0.0273

0.9

0.8

Uniform coarsening: e(w)=0.0902

Water-cuts for case with changing well-configurations

### **Observations:**

- NU water-cut tracks reference curve closely: 1%-3% error.
- $\bullet$  Uniform grid gives  $\sim 10\%$  water-cut error.

## Conclusions

### Flashback:

- A generic semi-automated algorithm for generating coarse grids that resolve flow patterns has been presented.
- Solutions are significantly more accurate than solutions obtained on uniform coarse grids with similar number of cells.
- Water-cut error: 1%-3% pseudofunctions superfluous.
- Grid need **not** be regenerated when flow conditions change!

### **Potential application:**

User-specified grid-resolution to fit available computer resources.

### Relation to other methods:

Belongs to family of flow-based grids<sup>a</sup>: designed for flow scenarios where heterogeneity, rather than gravity, dominates flow patterns.

<sup>&</sup>lt;sup>a</sup>Garcia, Journel, Aziz (1990,1992), Durlofsky, Jones, Milliken (1994,1997)