Reservoir Simulation: From Upscaling to Multiscale Methods

Knut–Andreas Lie

SINTEF ICT, Dept. Applied Mathematics http://www.math.sintef.no/GeoScale

Multiscale Computational Science and Engineering, September 19–21, Trondheim, Norway

Reservoir simulation is the means by which a numerical model of the petrophysical characteristics of a hydrocarbon reservoir is used to analyze and predict fluid behavior in the reservoir over time.

Reservoir simulation is used as a basis for decisions regarding development of reservoirs and management during production. To this end, one needs to

- predict reservoir performance from geological descriptions and constraints,
- fit geological descriptions to static and dynamic data,
- assess uncertainty in predictions,
- optimize production strategies,

Reservoir modelling is a true *multiscale* discipline:

- Measurements and models on a large number of scales
- Large number of models
- Complex grids with a large number of parameters
- High degree of uncertainty

There is always a need for faster and more accurate simulators that use all available geological information

The scales that impact fluid flow in oil reservoirs range from

- the micrometer scale of pores and pore channels
- via dm-m scale of well bores and laminae sediments
- to sedimentary structures that stretch across entire reservoirs.

Physical Scales in Porous Media Flow Microscopic: the scale of individual sand grains

Physical Scales in Porous Media Flow Geological: the meter scale of layers, depositional beds, etc

Porous sandstones often have repetitive layered structures, but faults and fractures caused by stresses in the rock disrupt flow patterns

Physical Scales in Porous Media Flow

Reservoir: the kilometer scale of sedimentary structures

Geomodels:

- are articulations of the experts' perception of the reservoir
- describe the reservoir geometry (horizons, faults, etc)
- give rock parameters (e.g., permeability ${\bf K}$ and porosity ϕ) that determine the flow

In the following: the term "geomodel" will designate a grid model where rock properties have been assigned to each cell

Consider the following model problem

 $\begin{array}{lll} \text{Darcy's law:} & v = -K \left(\nabla p - \rho g \nabla D \right), \\ \text{Mass balance:} & \nabla \cdot v = q & \text{in } \Omega, \\ \text{Boundary conditions:} & v \cdot n = 0 & \text{on } \partial \Omega. \end{array}$

The multiscale structure of porous media enters the equations through the absolute permeability K, which is a symmetric and positive definite tensor with uniform upper and lower bounds.

We will refer to p as pressure and v as velocity.

Rock properties are used as parameters in flow models

• Permeability **K** spans many length scales and have multiscale structure

 $\mathsf{max}\,\mathbf{K}/\mathsf{min}\,\mathbf{K}\sim 10^3\text{--}10^{10}$

• Details on all scales impact flow

Challenges:

- How much details should one use?
- Need for good linear solvers, preconditioners, etc.

() SINTEF

Applied Mathematics

21/09/2007 < □ > 11/47

Flow Simulation Gap in resolution and model sizes

Gap in resolution:

- High-resolution geomodels may have $10^6 10^{10}$ cells
- Conventional simulators are capable of about $10^5 10^6$ cells

Traditional solution: upscaling of parameters

Assume that u satisfies the elliptic PDE:

$$-\nabla \big(K(x) \nabla u \big) = f.$$

Upscaling amounts to finding a new field $K^*(\bar{x})$ on a coarser grid such that

$$-\nabla \big(K^*(\bar{x}) \nabla u^* \big) = \bar{f},$$

$$u^* \sim \bar{u}, \qquad q^* \sim \bar{q} \;.$$

🕥 SINTEF

How do we represent fine-scale heterogeneities on a coarse scale?

- Combinations of arithmetic, geometric, harmonic averaging
- Power averaging $\left(\frac{1}{|V|}\int_V a(x)^p dx\right)^{1/p}$
- Equivalent permeabilities ($a_{xx}^* = -Q_x L_x / \Delta P_x$)

Is it necessary and does one want to do it?

There are many difficulties associated with upscaling

- Bottleneck in the workflow
- Loss of details
- Lack of robustness
- Need for resampling for complex grid models
- Not obvious how to extend the ideas to 3-phase flows

Need for fine-scale computations?

In the future: need for multiphysics on multiple scales?

Fluid Simulations Directly on Geomodels

Research vision:

Direct simulation of complex grid models of highly heterogeneous and fractured porous media - a technology that bypasses the need for upscaling.

Applications:

Huge models, multiple realizations, prescreening, validation, optimization, data integration, ...

To this end, we seek a methodology that

- incorporates small-scale effects into coarse-scale system;
- gives a detailed image of the flow pattern on the fine scale, without having to solve the full fine-scale system;
- is robust, conservative, accurate, and efficient.

Velocity field computed with mimetic FDM

Velocity field computed with 4M

From Upscaling to Multiscale Methods

From Upscaling to Multiscale Methods

Standard upscaling:

Standard upscaling:

Multiscale method:

Multiscale method:

21/09/2007 < □ ▶ 18/47

Standard finite-element method (FEM):

Piecewise polynomial approximation to pressure, $\int l\nabla K \nabla p \, dx = \int lq \, dx$

Mixed finite-element methods (MFEM):

Piecewise polynomial approximations to pressure and velocity

$$\int_{\Omega} k^{-1} v \cdot u \, dx - \int_{\Omega} p \, \nabla \cdot u \, dx = \int_{\Omega} k^{-1} \rho g \nabla D \cdot u \, dx \quad \forall u \in U,$$
$$\int_{\Omega} l \, \nabla \cdot v \, dx = \int_{\Omega} q l \, dx \qquad \forall l \in V.$$

Multiscale mixed finite-element method (MsMFEM):

Velocity approximated in a (low-dimensional) space V^{ms} designed to embody the impact of fine-scale structures.

Assume we are given a *fine* grid with permeability and porosity attached to each fine-grid block:

We construct a *coarse* grid, and choose the discretisation spaces U and V^{ms} such that:

- For each coarse block T_i , there is a basis function $\phi_i \in U$.
- For each coarse edge Γ_{ij} , there is a basis function $\psi_{ij} \in V^{ms}$.

Basis for the velocity field

Velocity basis function ψ_{ij} : unit flow through Γ_{ij} defined as

$$\nabla \cdot \psi_{ij} = \begin{cases} w_i(x), & \text{ for } x \in T_i, \\ -w_j(x), & \text{ for } x \in T_j, \end{cases}$$

and no flow $\psi_{ij} \cdot n = 0$ on $\partial(T_i \cup T_j)$.

Global velocity:

 $v = \sum_{ij} v_{ij} \psi_{ij}$, where v_{ij} are (coarse-scale) coefficients.

Multiscale Simulation versus Upscaling 10th SPE Comparative Solution Project

- Geomodel: $60 \times 220 \times 85 \approx 1, 1$ million grid cells, max $K_x / \min K_x \approx 10^7$, max $K_z / \min K_z \approx 10^{11}$
- Simulation: 2000 days of production (2-phase flow)

Commercial (finite-difference) solvers: incapable of running the whole model

Image: Sinter Applied Mathematics 21/09/2007 < □ > 23/47 Multiscale Simulation versus Upscaling 10th SPE Comparative Solution Project

Upscaling results reported by industry

Multiscale Simulation versus Upscaling 10th SPE Comparative Solution Project

Runtime: 2 min 22 sec on 2.4 GHz desktop PC

Reference saturation profile

MsMFEM saturation profile

MsMFEM saturation profile

MsMFEM saturation profile

() SINTEF

Comparison of Multiscale and Upscaling Methods

Local-global upscaling (Durlofsky et al)

global boundary conditions, iterative improvement (bootstrap)
reconstruction of fine-grid velocities

Multiscale mixed finite elements (Chen & Hou, ...)

multiscale basis functions for velocity
coarse-scale pressure

Multiscale finite-volume method (Jenny, Tchelepi, Lee,...)

multiscale basis functions for pressure
reconstruction of velocity on fine grid

Numerical subgrid upscaling (Arbogast, ...)

direct decomposition of the solution, V = V_c ⊕ V_f
RT0 on fine scale, BDM1 on coarse

() SINTEF

Applied Mathematics

21/09/2007 < □ > 27/47

Comparison of Multiscale and Upscaling Methods SPE 10, individual layers

Saturation errors at 0.3 PVI on 15×55 coarse grid

Comparison of Multiscale and Upscaling Methods Velocity errors for Layer 85

Comparison of Multiscale and Upscaling Methods Average saturation errors on Upper Næss formation (Layers 36–85)

Cartesian coarse grids:

Multiscale methods give enhanced accuracy when subgrid information is exploited.

Comparison of Multiscale and Upscaling Methods MsMFEM versus upscaling on complex coarse grids

Complex coarse grid-block geometries: MsMFEM is more accurate than upscaling, also for coarse-grid simulation. 0.8 0.18 MsMFEN MsMFEM A–UP A-UF 0.7 G-UP 0 16 G-UP H-UP H-UP 0 14 0.6 0 12 0.5 0.1 0.4 0.08 0.3 0.06 0.2 0.04 0.1 0.02 0 0 10 x 10 x 10 15 x 15 x 15 30 x 30 x 30 3 x 3 x 3 $5 \times 5 \times 5$ 10 x 10 x 10 15 x 15 x 15 30 x 30 x 30 3 x 3 x 3 $5 \times 5 \times 5$ Coarse-grid velocity errors Coarse-grid saturation errors

Up-gridded $30 \times 30 \times 333$ corner-point grid with layered log-normal permeability

🕥 SINTEF Applied Mathematics 21/09/2007 < 🗆 🕨 31/47 Computational Complexity Order-of-magnitude argument

Assume:

- Grid model with $N = N_s * N_c$ cells:
 - N_c number of coarse cells
 - N_s number of fine cells in each coarse cell
- Linear solver of complexity $\mathcal{O}(m^{\alpha})$ for $m \times m$ system
- Negligible work for determining local b.c., numerical quadrature, and assembly (can be important, especially for NSUM)

Direct solution

 N^{α} operations for a two-point finite volume method

MsMFEM

Computing basis functions: $D \cdot N_c \cdot (2N_s)^{\alpha}$ operations Solving coarse-scale system: $(D \cdot N_c)^{\alpha}$ operations

SINTEF

Computational Complexity Example: $128 \times 128 \times 128$ fine grid

Applied Mathematics

Comparison with algebraic multigrid (AMG), $\alpha=1.2$

() SINTEF

Computational Complexity Example: $128 \times 128 \times 128$ fine grid

Comparison with less efficient solver, lpha=1.5

21/09/2007 < □ > 33/47

Direct solution may be more efficient, so why bother with multiscale?

- Full simulation: $O(10^2)$ time steps.
- Basis functions need not always be recomputed

Also:

🕥 SINTEF

- Possible to solve very large problems
- Easy parallelization

Two-Phase Flow Example: quarter five-spot, Layer 85 from SPE 10, coarse grid: 10×22

Water cuts obtained by never updating basis functions:

Improved accuracy by adaptive updating of basis functions:

Application: History Matching on Geological Models

Assimilation of production data to calibrate model

- 1 million cells, 32 injectors, and 69 producers
- 2475 days \approx 7 years of water-cut data
- 6 iterations in data integration method
- 7 forward simulations, 15 pressure updates each

Computation time (on desktop PC):

- Original method: \sim 40 min (pressure solver: 30 min)
- Multiscale method: \sim 17 min (pressure solver: 7 min)

Geological Models as Direct Input to Simulation 'Medium-fitted' grids to model complex reservoir geometries

Another challenge:

- Industry-standard grids are often nonconforming and contain skewed and degenerate cells
- There is a trend towards unstructured grids
- Standard discretization methods produce wrong results on skewed and rough cells

SINTEF

Applied Mathematics

21/09/2007 < □ > 39/47

Corner-Point Grids

Industry standard for modelling complex reservoir geology

Specified in terms of:

- areal 2D mesh of vertical or inclined pillars
- each volumetric cell is restriced by four pillars
- each cell is defined by eight corner points, two on each pillar

Discretisation on Corner-Point Grids Exotic cell geometries from a simulation point-of-view

• Can use standard MFEM provided that one has mappings and reference elements

Applied Mathematics

- Can subdivide corner-point cells into tetrahedra
- We use mimetic finite differences (recent work by Brezzi, Lipnikov, Shashkov, Simoncini)

SINTEF

Discretisation on Corner-Point Grids Mimetic finite differences, hybrid of MFEM and multipoint FVM

Let u, v be piecewise linear vector functions and \mathbf{u} , \mathbf{v} be the corresponding vectors of discrete velocities over faces in the grid, i.e.,

$$\mathbf{v}_k = \frac{1}{|e_k|} \int_{e_k} v(s) \cdot n \, ds$$

Then the block ${\bf B}$ in the mixed system satisfies

$$\int_{\Omega} v^T K^{-1} u = \mathbf{v}^T \mathbf{B} \mathbf{u} \qquad \left(= \sum_{E \in \Omega} \mathbf{v}_E^T \mathbf{B}_E \mathbf{u}_E \right)$$

The matrices \mathbf{B}_E define discrete inner products

Mimetic idea:

Replace \mathbf{B}_E with a matrix \mathbf{M}_E that mimics some properties of the continuous inner product (SPD, globally bounded, Gauss-Green for linear pressure)

21/09/2007 < □ > 42/47

21/09/2007 < 🗆 🕨 41/47

Standard method + skew grids = grid-orientation effects

 \mathbf{K} : homogeneous and isotropic, symmetric well pattern \longrightarrow symmetric flow

Streamlines with standard method

Streamlines with mimetic method

() SINTEF

Applied Mathematics

21/09/2007 • 🗆 > 43/47

Multiscale Mixed Finite Elements An automated alternative to upscaling?

Coase grid = union of cells from fine grid

MsMFEMs allow fully automated coarse gridding strategies: grid blocks need to be connected, but can have arbitrary shapes.

Uniform up-gridding: grid blocks are shoe-boxes in index space. Model is courtesy of Alf B. Rustad, Statoil

Multiscale Mixed Finite Elements

Examples of exotic grids

Multiscale Mixed Finite Elements Ideal for coupling with well models

Fine grid to annulus, one coarse block for each well segment \Longrightarrow no well model needed.

Ability to handle industry-standard grids

- highly skewed and degenerate cells
- non-matching cells and unstructured connectivities

Compatible with current solvers

- can be built on top of commercial/inhouse solvers
- can utilize existing linear solvers

More efficient than standard solvers

- faster and requires less memory than fine-grid solvers
- automated generation of coarse simulation grids
- easy to parallelize

() SINTEF

Applied Mathematics

21/09/2007 < □ > 47/47