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Reservoir Simulation
What and why?

Reservoir simulation is the means by which a numerical model of
the petrophysical characteristics of a hydrocarbon reservoir is used
to analyze and predict fluid behavior in the reservoir over time.

Reservoir simulation is used as a basis for decisions regarding
development of reservoirs and management during production. To
this end, one needs to

predict reservoir performance from geological descriptions and
constraints,

fit geological descriptions to static and dynamic data,

assess uncertainty in predictions,

optimize production strategies,
...
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Reservoir Simulation
What are the challenges today?

Reservoir modelling is a true multiscale discipline:

Measurements and models on a large number of scales

Large number of models

Complex grids with a large number of parameters

High degree of uncertainty
...

There is always a need for faster and more accurate simulators that
use all available geological information
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Physical Scales in Porous Media Flow
One cannot resolve them all at once

The scales that impact fluid flow in oil reservoirs range from

the micrometer scale of pores and pore channels

via dm–m scale of well bores and laminae sediments

to sedimentary structures that stretch across entire reservoirs.

−→
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Physical Scales in Porous Media Flow
Microscopic: the scale of individual sand grains

Flow in individual pores between sand grains
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Physical Scales in Porous Media Flow
Geological: the meter scale of layers, depositional beds, etc

Porous sandstones often have repetitive layered structures, but
faults and fractures caused by stresses in the rock disrupt flow
patterns
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Physical Scales in Porous Media Flow
Reservoir: the kilometer scale of sedimentary structures

Applied Mathematics 21/09/2007 7/47

Physical Scales in Porous Media Flow
Choosing a scale for modelling
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Geological Models
The knowledge database in the oil company

Geomodels:

are articulations of the experts’
perception of the reservoir

describe the reservoir geometry
(horizons, faults, etc)

give rock parameters (e.g.,
permeability K and porosity φ)
that determine the flow

In the following: the term “geomodel” will designate a grid model
where rock properties have been assigned to each cell
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Flow Simulation
Model problem: incompressible, single phase

Consider the following model problem

Darcy’s law: v = −K (∇p− ρg∇D) ,

Mass balance: ∇ · v = q in Ω,

Boundary conditions: v · n = 0 on ∂Ω.

The multiscale structure of porous media enters the equations
through the absolute permeability K, which is a symmetric and
positive definite tensor with uniform upper and lower bounds.

We will refer to p as pressure and v as velocity.
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Flow Simulation
The impact of rock properties

Rock properties are used as parameters
in flow models

Permeability K spans many length
scales and have multiscale structure

maxK/minK ∼ 103–1010

Details on all scales impact flow

Ex: Brent sequence

Tarbert Upper Ness

Challenges:

How much details should one use?

Need for good linear solvers, preconditioners, etc.
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Flow Simulation
Gap in resolution and model sizes

Gap in resolution:

High-resolution geomodels may have 106 − 1010 cells

Conventional simulators are capable of about 105 − 106 cells

Traditional solution: upscaling of parameters

Assume that u satisfies the elliptic PDE:

−∇
(

K(x)∇u
)

= f.

Upscaling amounts to finding a new
field K∗(x̄) on a coarser grid such that

−∇
(

K∗(x̄)∇u∗
)

= f̄ ,

u∗ ∼ ū, q∗ ∼ q̄ .

⇓
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Upscaling Geological Models
Industry-standard methods

How do we represent fine-scale heterogeneities on a coarse scale?

Combinations of arithmetic, geometric, harmonic averaging

Power averaging
(

1
|V |

∫

V
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)1/p
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Upscaling Geological Models
Is it necessary and does one want to do it?

There are many difficulties associated with upscaling

Bottleneck in the workflow

Loss of details

Lack of robustness

Need for resampling for complex
grid models

Not obvious how to extend the
ideas to 3-phase flows

10 20 30 40 50 60

20

40

60

80

100

120

140

160

180

200

220

2 4 6 8 10

2

4

6

8

10

12

14

16

18

20

22

Need for fine-scale computations?

In the future: need for multiphysics on multiple scales?
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Fluid Simulations Directly on Geomodels

Research vision:

Direct simulation of complex grid models of highly heterogeneous
and fractured porous media - a technology that bypasses the need
for upscaling.

Applications:

Huge models, multiple realizations, prescreening, validation,
optimization, data integration, ..

To this end, we seek a methodology that

incorporates small-scale effects into coarse-scale system;

gives a detailed image of the flow pattern on the fine scale,
without having to solve the full fine-scale system;

is robust, conservative, accurate, and efficient.
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Multiscale Pressure Solvers
Efficient flow solution on complex grids – without upscaling

Basic idea:

Upscaling and downscaling in one step

Pressure varies smoothly and can be resolved on coarse grid

Velocity with subgrid resolution
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From Upscaling to Multiscale Methods

Standard upscaling:

⇓

Coarse grid blocks:

⇓

Flow problems:

Multiscale method:

⇓

Coarse grid blocks:

⇓

Flow problems:
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From Upscaling to Multiscale Methods

Standard upscaling:

⇓ ⇑

Coarse grid blocks:

⇓ ⇑

Flow problems:

Multiscale method:

⇓ ⇑

Coarse grid blocks:

⇓ ⇑

Flow problems:
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The Multiscale Mixed Finite-Element Method

Standard finite-element method (FEM):

Piecewise polynomial approximation to pressure,
∫

l∇K∇p dx =
∫

lq dx

Mixed finite-element methods (MFEM):

Piecewise polynomial approximations to pressure and velocity

∫

Ω

k−1v · u dx−

∫

Ω

p ∇ · u dx =

∫

Ω

k−1ρg∇D · u dx ∀u ∈ U,

∫

Ω

l ∇ · v dx =

∫

Ω

ql dx ∀l ∈ V.

Multiscale mixed finite-element method (MsMFEM):

Velocity approximated in a (low-dimensional) space V ms designed to
embody the impact of fine-scale structures.
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Multiscale Mixed Finite Elements
Grids and basis functions

Assume we are given a fine grid with permeability and porosity
attached to each fine-grid block:

Ti

Tj

We construct a coarse grid, and choose the discretisation spaces U
and V ms such that:

For each coarse block Ti, there is a basis function φi ∈ U .

For each coarse edge Γij , there is a basis function ψij ∈ V ms.
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(Multiscale) Mixed Finite Elements
Discretisation matrices (without hybridization)

Saddle-point problem:

(

B C
CT 0

)(

v
p

)

=

(

f
g

)

,

bij =

∫

Ω
ψik

−1ψj dx,

cij =

∫

Ω
φj∇ · ψi dx

Basis φj for pressure: equal one in cell j, zero otherwise

Basis ψi for velocity:

1.order Raviart–Thomas: Multiscale:
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Multiscale Mixed Finite Elements
Basis for the velocity field

Velocity basis function ψij : unit flow
through Γij defined as

∇ · ψij =

{

wi(x), for x ∈ Ti,

−wj(x), for x ∈ Tj ,

and no flow ψij · n = 0 on ∂(Ti ∪ Tj).

Global velocity:

v =
∑

ij vijψij , where vij are (coarse-scale) coefficients.
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Multiscale Simulation versus Upscaling
10th SPE Comparative Solution Project

Producer A

Producer B

Producer C

Producer D

Injector

Tarb
ert

Upper
Ness

Geomodel: 60 × 220 × 85 ≈ 1, 1 million grid cells,
maxKx/minKx ≈ 107, maxKz/minKz ≈ 1011

Simulation: 2000 days of production (2-phase flow)

Commercial (finite-difference) solvers: incapable of running the whole model
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Multiscale Simulation versus Upscaling
10th SPE Comparative Solution Project

Upscaling results reported by industry
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Multiscale Simulation versus Upscaling
10th SPE Comparative Solution Project

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Time (days)

W
a
te

rc
u
t

Producer A

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Time (days)

W
a
te

rc
u
t

Producer B

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Time (days)

W
a
te

rc
u
t

Producer C

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Time (days)

W
a
te

rc
u
t

Producer D

Reference
MsMFEM
Nested Gridding

Reference
MsMFEM
Nested Gridding

Reference
MsMFEM
Nested Gridding

Reference
MsMFEM
Nested Gridding

upscaling/downscaling, MsMFEM/streamlines, fine grid

Runtime: 2 min 22 sec on 2.4 GHz desktop PC
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Robustness
SPE10, Layer 85 (60 × 220 Grid)
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Comparison of Multiscale and Upscaling Methods

1 Local-global upscaling (Durlofsky et al)

global boundary conditions, iterative improvement (bootstrap)
reconstruction of fine-grid velocities

2 Multiscale mixed finite elements (Chen & Hou, . . . )

multiscale basis functions for velocity
coarse-scale pressure

3 Multiscale finite-volume method (Jenny, Tchelepi, Lee,. . . )

multiscale basis functions for pressure
reconstruction of velocity on fine grid

4 Numerical subgrid upscaling (Arbogast, . . . )

direct decomposition of the solution, V = Vc ⊕ Vf

RT0 on fine scale, BDM1 on coarse
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Comparison of Multiscale and Upscaling Methods
SPE 10, individual layers

Saturation errors at 0.3 PVI on 15 × 55 coarse grid
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Comparison of Multiscale and Upscaling Methods
Velocity errors for Layer 85

MsMFEM: MsFVM:
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Comparison of Multiscale and Upscaling Methods
Average saturation errors on Upper Næss formation (Layers 36–85)

Cartesian coarse grids:

Multiscale methods give enhanced accuracy when subgrid
information is exploited.
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Comparison of Multiscale and Upscaling Methods
MsMFEM versus upscaling on complex coarse grids

Complex coarse grid-block geometries:

MsMFEM is more accurate than upscaling, also
for coarse-grid simulation.

3 x 3 x 3 5 x 5 x 5 10 x 10 x 10 15 x 15 x 15 30 x 30 x 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

MsMFEM

A−UP

G−UP

H−UP

3 x 3 x 3 5 x 5 x 5 10 x 10 x 10 15 x 15 x 15 30 x 30 x 30
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

MsMFEM

A−UP

G−UP

H−UP

Coarse-grid velocity errors Coarse-grid saturation errors

Up-gridded 30 × 30 × 333 corner-point grid with layered log-normal permeability

Applied Mathematics 21/09/2007 31/47

Computational Complexity
Order-of-magnitude argument

Assume:

Grid model with N = Ns ∗Nc cells:

Nc number of coarse cells
Ns number of fine cells in each coarse cell

Linear solver of complexity O(mα) for m×m system

Negligible work for determining local b.c., numerical
quadrature, and assembly (can be important, especially for NSUM)

Direct solution

Nα operations for a two-point finite volume method

MsMFEM

Computing basis functions: D ·Nc · (2Ns)
α operations

Solving coarse-scale system: (D ·Nc)
α operations
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Computational Complexity
Example: 128 × 128 × 128 fine grid
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Computational Complexity
Example: 128 × 128 × 128 fine grid
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Multiphase Flow
Time-dependent problems: ∇(K(x)λ(S)∇p) = q(S)

Direct solution may be more efficient, so why bother with multiscale?

Full simulation: O(102) time
steps.

Basis functions need not
always be recomputed

Also:

Possible to solve very large
problems

Easy parallelization
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Two-Phase Flow
Example: quarter five-spot, Layer 85 from SPE 10, coarse grid: 10 × 22

Water cuts obtained by never updating basis functions:
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Two-Phase Flow
Example: quarter five-spot, Layer 85 from SPE 10, coarse grid: 10 × 22

Improved accuracy by adaptive updating of basis functions:
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Application: History Matching on Geological Models

Assimilation of production data to calibrate model

1 million cells, 32 injectors, and 69
producers

2475 days ≈ 7 years of water-cut data

6 iterations in data integration method

7 forward simulations, 15 pressure
updates each

Computation time (on desktop PC):

Original method: ∼ 40 min (pressure solver: 30 min)

Multiscale method: ∼ 17 min (pressure solver: 7 min)
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Geological Models as Direct Input to Simulation
‘Medium-fitted’ grids to model complex reservoir geometries

Another challenge:

Industry-standard grids are often nonconforming and contain
skewed and degenerate cells

There is a trend towards unstructured grids

Standard discretization methods produce wrong results on
skewed and rough cells

Corner point: Tetrahedral: PEBI:
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Corner-Point Grids
Industry standard for modelling complex reservoir geology

Specified in terms of:

areal 2D mesh of vertical or
inclined pillars

each volumetric cell is restriced by
four pillars

each cell is defined by eight corner
points, two on each pillar
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Discretisation on Corner-Point Grids
Exotic cell geometries from a simulation point-of-view

Skew and deformed grid
blocks:

Non-matching cells:

Can use standard MFEM provided that one has mappings and
reference elements

Can subdivide corner-point cells into tetrahedra

We use mimetic finite differences (recent work by Brezzi,
Lipnikov, Shashkov, Simoncini)
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Discretisation on Corner-Point Grids
Mimetic finite differences, hybrid of MFEM and multipoint FVM

Let u, v be piecewise linear vector functions and u, v be the
corresponding vectors of discrete velocities over faces in the grid,
i.e.,

vk =
1

|ek|

∫

ek

v(s) · nds

Then the block B in the mixed system satisfies

∫

Ω
vTK−1u = v

T
Bu

(

=
∑

E∈Ω

v
T
EBEuE

)

The matrices BE define discrete inner products

Mimetic idea:

Replace BE with a matrix ME that mimics some properties of the
continuous inner product (SPD, globally bounded, Gauss-Green for
linear pressure)
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Mimetic Finite Difference Methods
General method applicable to general polyhedral cells

Standard method + skew grids = grid-orientation effects

K: homogeneous and isotropic,
symmetric well pattern
−→ symmteric flow
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Multiscale Mixed Finite Elements
An automated alternative to upscaling?

Coase grid = union of cells from fine grid

MsMFEMs allow fully automated coarse gridding strategies: grid
blocks need to be connected, but can have arbitrary shapes.

Uniform up-gridding: grid blocks are shoe-boxes in index space.

Model is courtesy of Alf B. Rustad, Statoil
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Multiscale Mixed Finite Elements
Examples of exotic grids
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Multiscale Mixed Finite Elements
Ideal for coupling with well models

Fine grid to annulus, one coarse block for each well segment =⇒
no well model needed.
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Summary
Advantages of multiscale mixed/mimetic pressure solvers

Ability to handle industry-standard grids

highly skewed and degenerate cells

non-matching cells and unstructured connectivities

Compatible with current solvers

can be built on top of commercial/inhouse solvers

can utilize existing linear solvers

More efficient than standard solvers

faster and requires less memory than fine-grid solvers

automated generation of coarse simulation grids

easy to parallelize
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