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Reservoir Simulation Group
Direct simulation of geomodels

Research group

5 researchers

3–4 postdocs

2–4 PhD students

1–2 programmers
Collaboration with national and international partners in industry
and academia

Research vision:

Direct simulation of complex grid models of highly heterogeneous
and fractured porous media - a technology that bypasses the need
for upscaling.

http://www.math.sintef.no/GeoScale/
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Reservoir Simulation Group
Direct simulation of geomodels

Applications:

Validation during development of geomodels

Fast simulations of multiple realizations

Optimization of production, well placement, etc

History matching

Geological storage of CO2

Funding:

Strategic research grant and PhD/postdoc grants

Research grants with end-user involvement (KMB, BIP, SFI)

Industry projects
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Direct Simulation on Geomodels
How to approach this vision ...

Research vision:

Direct simulation of complex grid models of highly heterogeneous
and fractured porous media - a technology that bypasses the need
for upscaling.

Geological models as direct
input to ....

.... efficient multiscale
simulation techniques
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Physical Scales in Porous Media Flow
... one cannot resolve them all at once

The scales that impact fluid flow in oil reservoirs range from

the micrometer scale of pores and pore channels

via dm–m scale of well bores and laminae sediments

to sedimentary structures that stretch across entire reservoirs.
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Geological Models
The knowledge database in the oil company

Geomodels:

are articulations of the experts
perception of the reservoir

describe the reservoir geometry
(horizons, faults, etc)

give rock parameters (e.g.,
permeability K and porosity φ)
that determine flow

In the following: the term “geomodel” will designate a grid model
where rock properties have been assigned to each cell

Applied Mathematics June 2007 6/39



Geological Models as Direct Input to Simulation
The impact of rock properties

Rock properties are used as parameters
in flow models

Permeability K spans many length
scales and have multiscale structure

maxK/minK ∼ 103–1010

Details on all scales impact flow

Ex: Brent sequence

Tarbert Upper Ness

Challenges:

How much details should one use?

Need for good linear solvers, preconditioners, etc.
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Geological Models as Direct Input to Simulation
Gap in resolution and model sizes

Gap in resolution:

High-resolution geomodels may have 107 − 109 cells

Conventional simulators are capable of about 105 − 106 cells

Traditional solution: upscaling of parameters

Upscaling the geomodel is not
always the answer

Loss of details and lack of
robustness
Bottleneck in the workflow

Need for fine-scale computations?

In the future: need for multiphysics
on multiple scales?
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Geological Models as Direct Input to Simulation
Complex reservoir geometries

Challenge:

Industry-standard grids are often nonconforming and contain
skewed and degenerate cells

There is a trend towards unstructured grids

Standard discretization methods produce wrong results on
skewed and rough cells

Corner point: Tetrahedral: PEBI:
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Corner-Point Grids
Industry standard for modelling complex reservoir geology

Specified in terms of:

areal 2D mesh of vertical or
inclined pillars

each volumetric cell is restriced by
four pillars

each cell is defined by eight corner
points, two on each pillar
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Discretisation on Corner-Point Grids
Exotic cell geometries from a simulation point-of-view

Accurate simulation of industry-standard grid models is
challenging!

Skew and deformed grid
blocks:

Non-matching cells:

Applied Mathematics June 2007 11/39



Mimetic Finite Difference Methods
General method applicable to general polyhedral cells

Standard method + skew grids = grid-orientation effects

K: homogeneous and isotropic,
symmetric well pattern
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Direct Simulation on Geomodels
How to approach this vision ...

Research vision:

Direct simulation of complex grid models of highly heterogeneous
and fractured porous media - a technology that bypasses the need
for upscaling.

Geological models as direct
input to ....

.... efficient multiscale
simulation techniques

multiscale pressure solver fast transport solvers
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Key Technology: Multiscale Pressure Solvers
Efficient flow solution on complex grids – without upscaling

Basic idea:

Upscaling and downscaling in one step

Pressure on coarse grid (subresolution near wells)

Velocity with subgrid resolution everywhere

Example: Layer 36 from SPE 10
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From Upscaling to Multiscale Methods

Standard upscaling:

⇓

⇑

Coarse grid blocks:⇓

⇑

Flow problems:

Multiscale method:

⇓

⇑

Coarse grid blocks:

⇓

⇑

Flow problems:
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Multiscale Mixed/Mimetic Pressure Solvers
Advantages

Ability to handle industry-standard grids

highly skewed and degenerate cells

non-matching cells and unstructured connectivities

Compatible with current solvers

can be built on top of commercial/inhouse solvers

can utilize existing linear solvers

More efficient than standard solvers

automated generation of coarse simulation grids

easy to parallelize

less memory requirements than fine-grid solvers
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The Multiscale Mixed Finite-Element Method
Mixed formulation of: ∇v = q, v = −k(∇v − pg∇z)

Standard finite-element method (FEM):

Piecewise polynomial approximation to pressure

Mixed finite-element methods (MFEM):

Piecewise polynomial approximations simultaneously to pressure
and velocity

Multiscale mixed finite-element method (MsMFEM):

Velocity approximated in a (low-dimensional) space designed to
embody the impact of fine-scale structures.
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Multiscale Mixed Finite Elements
Grids and Basis Functions

Assume we are given a fine grid with permeability and porosity
attached to each fine-grid block:

We construct a coarse grid, and choose the discretisation spaces U
and V ms such that:

For each coarse block Ti, there is a basis function φi ∈ U .

For each coarse edge Γij , there is a basis function ψij ∈ V ms.
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Multiscale Mixed Finite Elements
Basis for the Velocity Field

Velocity basis function ψij : unit flow
through Γij defined as

∇ · ψij =

{
wi(x), for x ∈ Ti,

−wj(x), for x ∈ Tj ,

and no flow ψij · n = 0 on ∂(Ti ∪ Tj).

Multiscale space:
V ms = span{ψij = −λK∇φij}

Global velocity:

v =
∑

ij vijψij , where vij are (coarse-scale) coefficients.

Applied Mathematics June 2007 19/39



Multiscale Mixed/Mimetic Method (4M)
Coarse grid

Blocks in coarse grid: connected sets of cells from geomodel

Example: Depositional bed model

Coarse grid obtained with uniform coarsening in index space
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Multiscale Mixed/Mimetic Method (4M)
Examples of exotic grids – an indication of 4M’s grid flexibility
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Multiscale Mixed/Mimetic Method (4M)
Workflow

At initial time:

Detect all adjacent blocks Compute ψ for each domain
Homogeneous medium Heterogeneous medium

For each time step:

Assemble and solve coarse-grid system

Recover fine-grid velocity

Solve fluid-transport equations
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Multiscale Mixed/Mimetic Method (4M)
Application 1: Fast reservoir simulation on geomodels

SPE 10, Model 2:
Producer A

Producer B

Producer C

Producer D

Injector

Tarb
ert

Upper
Ness

Fine grid: 60× 220× 85
Coarse grid: 5× 11× 17
2000 days production

4M + streamlines:
2 min 22 sec on 2.4 GHz
desktop PC

Water-cut curves at the four producers
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Multiscale Mixed/Mimetic Method (4M)
Application 2: History matching on geological models

Assimilation of production data to calibrate model

1 million cells, 32 injectors, and 69 producers

2475 days ≈ 7 years of water-cut data

Time-residual Amplitude-residual

Computation time: ∼ 17 min on desktop PC (6 iterations).
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Direct Simulation on Geomodels
How to approach this vision ...

Research vision:

Direct simulation of complex grid models of highly heterogeneous
and fractured porous media - a technology that bypasses the need
for upscaling.

Geological models as direct
input to ....

.... efficient multiscale
simulation techniques

multiscale pressure solver fast transport solvers
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Adaptive Model Reduction of Transport Grids
Flow-based nonuniform coarsening

Task

Given the ability to model velocity on geomodels and transport on
coarse grids:
Find a suitable coarse grid that best resolves fluid transport and
minimizes accuracy loss.

SPE 10, Layer 37
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Adaptive Model Reduction of Transport Grids
Grid generation procedure (Layer 68)

Step 1: Segment ln |v| into N level sets

Robust choice: N = 10

Step 1: 1411 cells

Step 2: Combine small blocks (|B| < c) with a neighbour

Merge B and B′ if
1

|B|
∫

B
ln |v| ≈
1

|B′|
∫

B′ ln |v|

Step 2: 94 cells
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Adaptive Model Reduction of Transport Grids
Grid generation procedure (Layer 68)

Step 3: Refine blocks with too much flow (
∫
B ln |v|dx > C)

Build B′ inwards from ∂B
Restart with B = B \B′

Step 3: 249 cells

Step 4: Combine small blocks with a neighbouring block

Step 2 repeated

Step 4: 160 cells
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Adaptive Model Reduction of Transport Grids
Example 1: Layer 68, SPE10, 5-spot well pattern
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Non−uniform coarsening
Uniform coarsening
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Uniform coarsening

Geomodel:
60×220 = 13 200

Uniform:
15× 44 = 660

Non-uniform:
619–734 blocks

Observations:

First 35 layers: ⇒ uniform grid adequate.

Last 50 layers: ⇒ uniform grid inadequate.

Non-uniform grid gives consistent results for all layers.
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Adaptive Model Reduction of Transport Grids
Example 1: Layer 68, SPE10, 5-spot well pattern

Geomodel: 13200 cells

Coarse grid: 660 cells Coarse grid: 649 cells

Coarse grid: 264 cells Coarse grid: 257 cells
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Adaptive Model Reduction of Transport Grids
Example 2: Depositional bed, 20 lognormal realizations, q5-spot
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⇐ 2 realizations
15206 cells

Uniform:
838 blocks

Non-uniform:
647–704 blocks

Observations:

Coarsening algorithm applicable to unstructured grids
— accuracy consistent with observations for SPE10 models.

Results obtained with uniform grid (in index space) inaccurate.
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Fast Methods Based on Topological Sorting

Flow models are typically on the form

au+ v · ∇f(u) = b(u), u given on ∂Ω−

Examples:

Steady-state tracer: v · ∇c = 0

Time-of-flight: v · ∇τ = φ

Implicit schemes for multiphase/multicomponent transport:

Sn+1 + ∆tv · ∇f(Sn+1) = ∆tq(Sn+1) + Sn

Basic idea

1 Utilize the unidirectional flow property to solve cell by cell

2 High order: discontinous Galerkin + upwind flux to preserve
unidirectional flow property
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Fast Methods Based on Topological Sorting
Motivation: Implicit scheme in 1D

S1 · · · Sk−1 Sk Sk+1 · · · Sm

v1 vk−1 vk vm−1

First-order upwind scheme (vk > 0, ∀k):

φ

∆t
(Sn+1

k −Sn
k ) +

1

∆x

(
vk−1f(Sn+1

k−1)− vkf(Sn+1
k )

)
= Qk(Sn+1

k )

Lower triangular matrix =⇒ equations can be solved in sequence

Multidimensions

Same idea applies by using a topological sort of the directed graph
of fluxes
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Fast Methods Based on Topological Sorting
Motivation: Homogeneous quarter-five spot in 2D

Grid and flux matrix
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Fast Methods Based on Topological Sorting
Motivation: Heterogeneous quarter-five spot in 2D

Grid and flux matrix
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Fast Methods Based on Topological Sorting
Application 1: Delineation of reservoir volumes

SPE 10, Model 2, 60× 220× 85 (1.122 million grid blocks)

Stationary tracer:

Solve v · ∇c = qi for i wells
Contour c = 0.5

Scheme: dG(n)+upwinding

Timings:
order dof’s time

0 1 3.1 sec
1 4 9.9 sec
2 10 86.8 sec

CPU: AMD Athlon X2 4400+
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Fast Methods Based on Topological Sorting
Application 2: Time-of-flight – timelines in the reservoir

Time-of-flight

Travel time for a neutral particle injected at boundary/well

Timelines for single phase flow

Layer 1 of SPE 10
64× 64× 16 grid, vertical q5-spot
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Fast Methods Based on Topological Sorting
Application 3: Multiphase flow

Key idea:

Implicit time discretization: element-wise Newton-Raphson
solution gives high efficiency.

O(n) operations for n unknowns

Local control over Newton iteration.

Small memory requirements.

Small, simple code.

Well-known conservative
discretisation.

Valid for general polyhedral grids.

Water-cut, SPE 10, Model 2
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Summary

The research will enable simulator technology to better aid more
work processes – by striking balances between reduced computa-
tional time, geological representation, and complexity of flow physics

A key to efficient simulation methods – operator splitting:

Multiscale pressure solvers:

Upscaling and downscaling in one step
Robust and efficient alternative to upscaling
Flow field on coarse, intermediate, and fine grid

Fast transport solvers, (coarse–intermediate–fine grids):

Adaptive nonuniform coarsening
Discontinuous Galerkin with topological sorting
Streamlines
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