Direct Flow Simulation of High-Resolution Geo-Cellular Models

Knut-Andreas Lie

SINTEF ICT, Dept. Applied Mathematics

PGP Wine Seminar

Applied Mathematics

Reservoir Simulation Group

Direct simulation of geomodels

Research group

- 5 researchers
- 3-4 postdocs
- 2-4 PhD students
- 1–2 programmers

Collaboration with national and international partners in industry and academia

Research vision:

Direct simulation of complex grid models of highly heterogeneous and fractured porous media - a technology that bypasses the need for upscaling.

http://www.math.sintef.no/GeoScale/

June 2007 ∢ □ ▶ 2/39

Reservoir Simulation Group Direct simulation of geomodels

Applications:

- Validation during development of geomodels
- Fast simulations of multiple realizations
- Optimization of production, well placement, etc
- History matching
- Geological storage of CO₂

Funding:

- Strategic research grant and PhD/postdoc grants
- Research grants with end-user involvement (KMB, BIP, SFI)
- Industry projects

How to approach this vision ...

Research vision:

Direct simulation of complex grid models of highly heterogeneous and fractured porous media - a technology that bypasses the need for upscaling.

Geological models as direct input to

.... efficient multiscale simulation techniques

How to approach this vision ...

Research vision:

Direct simulation of complex grid models of highly heterogeneous and fractured porous media - a technology that bypasses the need for upscaling.

Geological models as direct input to

.... efficient multiscale simulation techniques

The scales that impact fluid flow in oil reservoirs range from

- the micrometer scale of pores and pore channels
- via dm-m scale of well bores and laminae sediments
- to sedimentary structures that stretch across entire reservoirs.

Geomodels:

- are articulations of the experts perception of the reservoir
- describe the reservoir geometry (horizons, faults, etc)
- give rock parameters (e.g., permeability K and porosity φ) that determine flow

In the following: the term "geomodel" will designate a grid model where rock properties have been assigned to each cell

June 2007 ∢ □ ▶ 6/39

Rock properties are used as parameters in flow models

• Permeability K spans many length scales and have multiscale structure

 $\mathsf{max}\,\mathbf{K}/\,\mathsf{min}\,\mathbf{K}\sim 10^3\text{--}10^{10}$

• Details on all scales impact flow

Ex: Brent sequence

Tarbert

Upper Ness

Challenges:

- How much details should one use?
- Need for good linear solvers, preconditioners, etc.

Geological Models as Direct Input to Simulation Gap in resolution and model sizes

Gap in resolution:

- High-resolution geomodels may have $10^7 10^9$ cells
- $\bullet\,$ Conventional simulators are capable of about 10^5-10^6 cells

Traditional solution: upscaling of parameters

- Upscaling the geomodel is not always the answer
 - Loss of details and lack of robustness
 - Bottleneck in the workflow
- Need for fine-scale computations?
- In the future: need for multiphysics on multiple scales?

8/39

Geological Models as Direct Input to Simulation Complex reservoir geometries

Challenge:

- Industry-standard grids are often nonconforming and contain skewed and degenerate cells
- There is a trend towards unstructured grids
- Standard discretization methods produce wrong results on skewed and rough cells

Specified in terms of:

- areal 2D mesh of vertical or inclined pillars
- each volumetric cell is restriced by four pillars
- each cell is defined by eight corner points, two on each pillar

Accurate simulation of industry-standard grid models is challenging!

Non-matching cells:

Mimetic Finite Difference Methods General method applicable to general polyhedral cells

Standard method + skew grids = grid-orientation effects

 \mathbf{K} : homogeneous and isotropic, symmetric well pattern \longrightarrow symmetric flow

Streamlines with standard method

Streamlines with mimetic method

How to approach this vision ...

Research vision:

Direct simulation of complex grid models of highly heterogeneous and fractured porous media - a technology that bypasses the need for upscaling.

Geological models as direct input to

.... efficient multiscale simulation techniques

Applied Mathematics

How to approach this vision ...

Research vision:

Direct simulation of complex grid models of highly heterogeneous and fractured porous media - a technology that bypasses the need for upscaling.

Geological models as direct input to

.... efficient multiscale simulation techniques

multiscale pressure solver

fast transport solvers

June 2007 □ 13/39

Key Technology: Multiscale Pressure Solvers Efficient flow solution on complex grids – without upscaling

Basic idea:

- Upscaling and downscaling in one step
- Pressure on coarse grid (subresolution near wells)
- Velocity with subgrid resolution everywhere

Example: Layer 36 from SPE 10

Pressure field computed with mimetic FDM

Pressure field computed with 4M

Velocity field computed with mimetic FDM

Velocity field computed with 4M

Standard upscaling:

Standard upscaling:

₽

Coarse grid blocks:

Standard upscaling:

₽

Coarse grid blocks:

Flow problems:

() SINTEF

Standard upscaling:

Coarse grid blocks:

↓ ↑

Flow problems:

Standard upscaling:

↓ ↑

Coarse grid blocks:

↓ ↑

Flow problems:

() SINTEF

Standard upscaling:

↓ ↑

Coarse grid blocks:

↓ ↑

Flow problems:

Standard upscaling:

↓ ↑

Multiscale method:

Coarse grid blocks:

↓ ↑

Flow problems:

() SINTEF

Standard upscaling:

Multiscale method:

↓ ↑

Coarse grid blocks:

↓ ↑

Flow problems:

() SINTEF

↓ Coarse grid blocks:

q=1

Applied Mathematics

Standard upscaling:

Multiscale method:

↓ ↑

Coarse grid blocks:

↓ ↑

Flow problems:

Standard upscaling:

Multiscale method:

Coarse grid blocks:

Flow problems:

↓ ↑

Flow problems:

June 2007 ∢ □ → 15/39

Multiscale Mixed/Mimetic Pressure Solvers

Advantages

Ability to handle industry-standard grids

- highly skewed and degenerate cells
- non-matching cells and unstructured connectivities

Compatible with current solvers

- can be built on top of commercial/inhouse solvers
- can utilize existing linear solvers

More efficient than standard solvers

- automated generation of coarse simulation grids
- easy to parallelize
- less memory requirements than fine-grid solvers

Standard finite-element method (FEM):

Piecewise polynomial approximation to pressure

Mixed finite-element methods (MFEM):

Piecewise polynomial approximations simultaneously to pressure and velocity

Standard finite-element method (FEM):

Piecewise polynomial approximation to pressure

Mixed finite-element methods (MFEM):

Piecewise polynomial approximations simultaneously to pressure and velocity

Multiscale mixed finite-element method (MsMFEM):

Velocity approximated in a (low-dimensional) space designed to embody the impact of fine-scale structures.

June 2007 < □ > 17/39

June 2007 < □ > 18/39

We construct a *coarse* grid, and choose the discretisation spaces U and V^{ms} such that:

We construct a *coarse* grid, and choose the discretisation spaces U and V^{ms} such that:

• For each coarse block T_i , there is a basis function $\phi_i \in U$.

We construct a *coarse* grid, and choose the discretisation spaces U and V^{ms} such that:

- For each coarse block T_i , there is a basis function $\phi_i \in U$.
- For each coarse edge Γ_{ij} , there is a basis function $\psi_{ij} \in V^{ms}$.

Multiscale Mixed Finite Elements Basis for the Velocity Field

Velocity basis function ψ_{ij} : unit flow through Γ_{ij} defined as

$$\nabla \cdot \psi_{ij} = \begin{cases} w_i(x), & \text{ for } x \in T_i, \\ -w_j(x), & \text{ for } x \in T_j, \end{cases}$$

and no flow
$$\psi_{ij} \cdot n = 0$$
 on $\partial(T_i \cup T_j)$.

Multiscale space: $V^{ms} = \text{span}\{\psi_{ij} = -\lambda K \nabla \phi_{ij}\}$

Global velocity:

 $v = \sum_{ij} v_{ij} \psi_{ij}$, where v_{ij} are (coarse-scale) coefficients.

 Blocks in coarse grid: connected sets of cells from geomodel

Example: Depositional bed model

Coarse grid obtained with uniform coarsening in index space

Multiscale Mixed/Mimetic Method (4M) Examples of exotic grids – an indication of 4M's grid flexibility

Non-uniform grid, hexahedral cells Non-uniform grid, general cells General grid-cell 10 10

() SINTEF

Applied Mathematics
$\underset{\text{Workflow}}{\text{Multiscale Mixed}/\text{Mimetic Method (4M)}}$

At initial time:

For each time step:

- Assemble and solve coarse-grid system
- Recover fine-grid velocity
- Solve fluid-transport equations

June 2007 < □ > 22/39

Multiscale Mixed/Mimetic Method (4M)

Application 1: Fast reservoir simulation on geomodels

Assimilation of production data to calibrate model

- 1 million cells, 32 injectors, and 69 producers
- $\bullet~2475~\text{days}\approx7$ years of water-cut data

Computation time: \sim 17 min on desktop PC (6 iterations).

How to approach this vision ...

Research vision:

Direct simulation of complex grid models of highly heterogeneous and fractured porous media - a technology that bypasses the need for upscaling.

Geological models as direct input to

.... efficient multiscale simulation techniques

multiscale pressure solver

fast transport solvers

June 2007 ◀ □ ▶ 25/39

How to approach this vision ...

Research vision:

Direct simulation of complex grid models of highly heterogeneous and fractured porous media - a technology that bypasses the need for upscaling.

Geological models as direct input to

.... efficient multiscale simulation techniques

multiscale pressure solver

fast transport solvers

June 2007 ◀ □ ▶ 25/39

Adaptive Model Reduction of Transport Grids Flow-based nonuniform coarsening

Task

Given the ability to model velocity on geomodels and transport on coarse grids:

Find a suitable coarse grid that best resolves fluid transport and minimizes accuracy loss.

SPE 10, Layer 37

 Logarithm of permeability: Layer 37 in SPE10
 Logarithm of velocity on geomodel

 Logarithm of velocity on non-uniform coarse grid: 208 cells
 Logarithm of velocity on Cartesian coarse grid: 220 cells

Step 1: Segment $\ln |v|$ into N level sets

Robust choice: N = 10

Step 1: 1411 cells

Step 1: Segment $\ln |v|$ into N level sets

Robust choice: N = 10

Step 1: 1411 cells

Step 2: Combine small blocks (|B| < c) with a neighbour

$$\begin{array}{l} \text{Merge } B \text{ and } B' \text{ if} \\ \frac{1}{|B|} \int_B \ln |v| \approx \\ \frac{1}{|B'|} \int_{B'} \ln |v| \end{array}$$

Step 2: 94 cells

() SINTEF

June 2007 < □ > 27/39

Step 3: Refine blocks with too much flow $(\int_B \ln |v| dx > C)$

Build B' inwards from ∂B Restart with $B = B \setminus B'$

Step 3: 249 cells

Step 3: Refine blocks with too much flow $(\int_B \ln |v| dx > C)$

Build B' inwards from ∂B Restart with $B = B \setminus B'$

Step 3: 249 cells

Step 4: Combine small blocks with a neighbouring block

Step 2 repeated

Step 4: 160 cells

() SINTEF

Applied Mathematics

Adaptive Model Reduction of Transport Grids Example 1: Layer 68, SPE10, 5-spot well pattern

Geomodel: $60 \times 220 = 13200$

Uniform: $15 \times 44 = 660$

Non-uniform: 619–734 blocks

Observations:

- First 35 layers: 22 \Rightarrow uniform grid adequate.
- Last 50 layers: \Rightarrow uniform grid inadequate.
- Non-uniform grid gives consistent results for all layers.

Adaptive Model Reduction of Transport Grids Example 1: Layer 68, SPE10, 5-spot well pattern

Logarithm of permeability: Layer 68

Geomodel: 13200 cells

Logarithm of velocity on Cartesian coarse grid

Coarse grid: 660 cells

Logarithm of velocity on geomodel

Logarithm of velocity on non-uniform coarse grid

Coarse grid: 649 cells

Coarse grid: 264 cells

Logarithm of velocity on non-uniform coarse grid

Coarse grid: 257 cells

() SINTEF

Applied Mathematics

June 2007 ∢ □ > 30/39

Adaptive Model Reduction of Transport Grids Example 2: Depositional bed, 20 lognormal realizations, q5-spot

Observations:

- Coarsening algorithm applicable to unstructured grids
 - accuracy consistent with observations for SPE10 models.
- Results obtained with uniform grid (in index space) inaccurate.

Fast Methods Based on Topological Sorting

Flow models are typically on the form

$$au + \mathbf{v} \cdot \nabla f(u) = b(u), \qquad u \text{ given on } \partial \Omega^-$$

Examples:

- Steady-state tracer: $\mathbf{v} \cdot \nabla c = \mathbf{0}$
- Time-of-flight: $\mathbf{v} \cdot \nabla \tau = \phi$
- Implicit schemes for multiphase/multicomponent transport:

$$S^{n+1} + \Delta t \mathbf{v} \cdot \nabla f(S^{n+1}) = \Delta t q(S^{n+1}) + S^n$$

Basic idea

- Utilize the unidirectional flow property to solve cell by cell
- High order: discontinous Galerkin + upwind flux to preserve unidirectional flow property

🕥 SINTEF

June 2007 ∢ □ ▶ 32/39

Fast Methods Based on Topological Sorting Motivation: Implicit scheme in 1D

First-order upwind scheme ($v_k > 0$, $\forall k$):

$$\frac{\phi}{\Delta t}(S_k^{n+1} - S_k^n) + \frac{1}{\Delta x}\left(v_{k-1}f(S_{k-1}^{n+1}) - v_kf(S_k^{n+1})\right) = Q_k(S_k^{n+1})$$

Lower triangular matrix \implies equations can be solved in sequence

June 2007 ◀ □ ▶ 33/39

Fast Methods Based on Topological Sorting Motivation: Implicit scheme in 1D

First-order upwind scheme ($v_k > 0$, $\forall k$):

$$\frac{\phi}{\Delta t}(S_k^{n+1} - S_k^n) + \frac{1}{\Delta x}\left(v_{k-1}f(S_{k-1}^{n+1}) - v_kf(S_k^{n+1})\right) = Q_k(S_k^{n+1})$$

Lower triangular matrix \implies equations can be solved in sequence

Multidimensions

Same idea applies by using a *topological sort* of the directed graph of fluxes

June 2007 < □ > 33/39

Grid and flux matrix

Graph interpretation

() SINTEF

June 2007 ∢ □ ▶ 34/39

Grid and flux matrix

Graph interpretation

() SINTEF

June 2007 ∢ □ ▶ 35/39

Grid and flux matrix

Graph interpretation and topological sorting

Flattened graph (unidirectional)

() SINTEF

Grid and flux matrix

Graph interpretation and topological sorting

Flattened graph (unidirectional)

() SINTEF

Grid and flux matrix

Graph interpretation and topological sorting

Flattened graph (unidirectional)

() SINTEF

Grid and flux matrix

Graph interpretation and topological sorting

Flattened graph (unidirectional)

() SINTEF

Grid and flux matrix

Graph interpretation and topological sorting

Flattened graph (unidirectional)

() SINTEF

Grid and flux matrix

Graph interpretation and topological sorting

1

Flattened graph (unidirectional)

() SINTEF

June 2007 ∢ □ ▶ 35/39

Grid and flux matrix

Graph interpretation and topological sorting

Flattened graph (unidirectional)

 $1 \rightarrow 4$

Grid and flux matrix

Graph interpretation and topological sorting

Flattened graph (unidirectional)

 $1 \rightarrow 4 \rightarrow 7$

SINTEF

June 2007 ∢ □ ▶ 35/39

Grid and flux matrix

Graph interpretation and topological sorting

Flattened graph (unidirectional)

 $1 \rightarrow 4 \rightarrow 7 \rightarrow 8$

🕥 SINTEF

June 2007 ∢ □ ▶ 35/39

Grid and flux matrix

Graph interpretation and topological sorting

Flattened graph (unidirectional)

June 2007 ∢ □ >

35/39

Grid and flux matrix

Graph interpretation and topological sorting

Flattened graph (unidirectional)

 $1 \rightarrow 4 \rightarrow 7 \rightarrow 8$

June 2007 ∢ □ ▶ 35/39

Grid and flux matrix

Graph interpretation and topological sorting

Flattened graph (unidirectional)

 $1 \rightarrow 4 \rightarrow 7 \rightarrow 8$

June 2007 < □ > 35/39

Grid and flux matrix

Graph interpretation and topological sorting

Flattened graph (unidirectional)

June 2007 ∢ □ >

35/39

Grid and flux matrix

Graph interpretation and topological sorting

Flattened graph (unidirectional) $1 \rightarrow 4 \rightarrow 7 \rightarrow 8 \rightarrow 5$

SINTEF

Grid and flux matrix

Graph interpretation and topological sorting

SINTEF

June 2007 ∢ □ ▶ 35/39

Grid and flux matrix

Graph interpretation and topological sorting

SINTEF

Applied Mathematics

Grid and flux matrix

Graph interpretation and topological sorting

June 2007 ∢ □ ▶ 35/39

Grid and flux matrix

Graph interpretation and topological sorting

Fast Methods Based on Topological Sorting Application 1: Delineation of reservoir volumes

SPE 10, Model 2, $60 \times 220 \times 85$ (1.122 million grid blocks)

Stationary tracer:	Timings:			
Solve \mathbf{x} , $\nabla \mathbf{a} = \mathbf{a}$ for i wells		order	dof's	time
Solve $\mathbf{v} \cdot \mathbf{v} c = q_i$ for <i>i</i> wens		0	1	3.1 sec
Contour $c = 0.5$		1	4	9.9 sec
		2	10	86.8 sec
Scheme: $dG(n)$ +upwinding	CPU: AMD Athlon X2 4400+			

() SINTEF

June 2007 ◀ □ ▶ 36/39

Time-of-flight

- Travel time for a neutral particle injected at boundary/well
- Timelines for single phase flow

Layer 1 of SPE 10

 $64\times 64\times 16$ grid, vertical q5-spot

June 2007 ◀ □ ► 37/39

Key idea:

Implicit time discretization: element-wise Newton-Raphson solution gives high efficiency.

- $\mathcal{O}(n)$ operations for n unknowns
- Local control over Newton iteration.
- Small memory requirements.
- Small, simple code.
- Well-known conservative discretisation.
- Valid for general polyhedral grids.

Water-cut, SPE 10, Model 2

38/39

The research will enable simulator technology to better aid more work processes – by striking balances between reduced computational time, geological representation, and complexity of flow physics

A key to efficient simulation methods - operator splitting:

- Multiscale pressure solvers:
 - Upscaling and downscaling in one step
 - Robust and efficient alternative to upscaling
 - Flow field on coarse, intermediate, and fine grid
- Fast transport solvers, (coarse-intermediate-fine grids):
 - Adaptive nonuniform coarsening
 - Discontinuous Galerkin with topological sorting
 - Streamlines

June 2007 < □ > 39/39