Use of Multiscale Methods to Bypass Upscaling Or as a Means to Provide Fast and Approximate Flow Responses in Optimization Workflows?

Knut-Andreas Lie

SINTEF ICT, Dept. Applied Mathematics

Workshop on Numerical Discretization and Upscaling Methods, Princeton, November 1-2

Applied Mathematics

Nov 2007 ◀ □ ▶ 1/62

Reservoir Simulation Group

Direct simulation of geomodels

Research group

- 3 researchers
- 4 postdocs
- 2-3 PhD students
- 3 programmers

Collaboration with national and international partners in industry and academia

Research vision:

Direct simulation of complex grid models of highly heterogeneous and fractured porous media - a technology that bypasses the need for upscaling.

http://www.math.sintef.no/GeoScale/

Nov 2007 ◀ □ ► 2/62

Reservoir Simulation Group Direct simulation of geomodels

Applications:

- Validation during development of geomodels
- Fast simulations of multiple realizations
- Optimization of production, well placement, etc
- History matching
- Geological storage of CO₂

Funding:

- Strategic research grant and PhD/postdoc grants
- Research grants with end-user involvement
- Industry projects

How to approach this vision ...

Research vision:

Direct simulation of complex grid models of highly heterogeneous and fractured porous media - a technology that bypasses the need for upscaling.

Geological models as direct input to

.... efficient multiscale simulation techniques

Nov 2007 ◀ □ ▶ 4/62

How to approach this vision ...

Research vision:

Direct simulation of complex grid models of highly heterogeneous and fractured porous media - a technology that bypasses the need for upscaling.

Geological models as direct input to

.... efficient multiscale simulation techniques

Nov 2007 ∢ □ ▶ 4/62

The scales that impact fluid flow in oil reservoirs range from

- the micrometer scale of pores and pore channels
- via dm-m scale of well bores and laminae sediments
- to sedimentary structures that stretch across entire reservoirs.

Geomodels:

- are articulations of the experts perception of the reservoir
- describe the reservoir geometry (horizons, faults, etc)
- give rock parameters (e.g., permeability K and porosity φ) that determine flow

In the following: the term "geomodel" will designate a grid model where rock properties have been assigned to each cell

Nov 2007 ◀ □ ► 6/62

Rock properties are used as parameters in flow models

• Permeability K spans many length scales and have multiscale structure

 $\mathsf{max}\,\mathbf{K}/\,\mathsf{min}\,\mathbf{K}\sim 10^3\text{--}10^{10}$

• Details on all scales impact flow

Ex: Brent sequence

Tarbert

Upper Ness

Challenges:

- How much details should one use?
- Need for good linear solvers, preconditioners, etc.

Nov 2007 ◀ □ ► 7/62

Geological Models as Direct Input to Simulation Gap in resolution and model sizes

Gap in resolution:

SINTEF

- High-resolution geomodels may have $10^7 10^9$ cells
- ullet Conventional simulators are capable of about 10^5-10^6 cells

Applied Mathematics

Traditional solution: upscaling of parameters

- Upscaling the geomodel is not always the answer
 - Loss of details and lack of robustness
 - Bottleneck in the workflow
- Need for fine-scale computations?
- In the future: need for multiphysics on multiple scales?

Geological Models as Direct Input to Simulation Complex reservoir geometries

Challenges:

- Industry-standard grids are often nonconforming and contain skewed and degenerate cells
- There is a trend towards unstructured grids
- Standard discretization methods produce wrong results on skewed and rough cells
- The combination of high aspect and anisotropy ratios can give very large condition numbers

Nov 2007 ∢ □ ▶

Specified in terms of:

- areal 2D mesh of vertical or inclined pillars
- each volumetric cell is restriced by four pillars
- each cell is defined by eight corner points, two on each pillar

Nov 2007 < D > 10/62

Discretisation on Corner-Point Grids Cell geometries are challenging from a discretization point-of-view

Very high aspect ratios (and centroid outside the cell):

Nov 2007 ◀ □ ▶ 11/62

Mimetic finite-difference methods may be interpreted as a finite-volume counterpart of mixed finite-element methods.

Key features:

- Applicable for models with general polyhedral grid-cells.
- Allow easy treatment of non-conforming grids with complex grid-cell geometries (including curved faces).
- Generic implementation: same code applies to all grids (e.g., corner-point/PEBI, matching/non-matching, ...).

Nov 2007 ◀ □ ► 12/62

Express fluxes
$$\mathbf{v} = (v_1, v_2, \dots, v_n)^T$$
 as:

$$\mathbf{v} = -\mathbf{T}(\mathbf{p} - p_0),$$

where $p = (p_1, p_2, ..., p_n)^T$.

Nov 2007 ◀ □ ▶ 13/62

Express fluxes
$$\mathbf{v} = (v_1, v_2, \dots, v_n)^T$$
 as:

$$\mathbf{v} = -\mathbf{T}(\mathbf{p} - p_0),$$

where $\mathbf{p} = (p_1, p_2, \dots, p_n)^T$. Impose exactness for any *linear* pressure field $p = \mathbf{x}^T \mathbf{a} + c$ (which gives velocity equal -Ka):

$$v_i = -A_i \mathbf{n}_i^T \mathbf{K} \mathbf{a}$$

 $p_i - p_0 = (\mathbf{x}_i - \mathbf{x}_0)^T \mathbf{a}.$

Express fluxes
$$\mathbf{v} = (v_1, v_2, \dots, v_n)^T$$
 as:

$$\mathbf{v} = -\mathbf{T}(\mathbf{p} - p_0),$$

where $\mathbf{p} = (p_1, p_2, \dots, p_n)^T$. Impose exactness for any *linear* pressure field $p = \mathbf{x}^T \mathbf{a} + c$ (which gives velocity equal -Ka): $v_i = -A_i \mathbf{n}_i^T \mathbf{K} \mathbf{a}$

$$p_i - p_0 = (\mathbf{x}_i - \mathbf{x}_0)^T \mathbf{a}.$$

As a result, \mathbf{T} must satisfy

$$\mathbf{T} \times \mathbf{C} = \mathbf{N} \times \mathbf{K}$$

where
$$\mathbf{C}(i,:) = (\mathbf{x}_i - \mathbf{x}_0)^T$$
 and $\mathbf{N}(i,:) = A_i \mathbf{n}_i^T$

SINTEF

Express fluxes
$$\mathbf{v} = (v_1, v_2, \dots, v_n)^T$$
 as:

$$\mathbf{v}=-\mathbf{T}(\mathbf{p}-p_0),$$

where $\mathbf{p} = (p_1, p_2, \dots, p_n)^T$. Impose exactness for any *linear* pressure field $p = \mathbf{x}^T \mathbf{a} + c$ (which gives velocity equal $-\mathbf{K}\mathbf{a}$): $v_i = -A_i \mathbf{n}_i^T \mathbf{K}\mathbf{a}$ $p_i - p_0 = (\mathbf{x}_i - \mathbf{x}_0)^T \mathbf{a}$.

As a result, T must satisfy

$$\mathbf{T} \times \mathbf{C} = \mathbf{N} \times \mathbf{K}$$

where
$$\mathbf{C}(i,:) = (\mathbf{x}_i - \mathbf{x}_0)^T$$
 and $\mathbf{N}(i,:) = A_i \mathbf{n}_i^T$

Family of valid solutions: $\mathbf{T} = \frac{1}{|E|} \mathbf{N} \mathbf{K} \mathbf{N}^T + \mathbf{T}_2,$

where \mathbf{T}_2 is such that \mathbf{T} is s.p.d. and $\mathbf{T}_2\mathbf{C} = \mathbf{O}$.

SINTEF

Express fluxes
$$\mathbf{v} = (v_1, v_2, \dots, v_n)^T$$
 as:

$$\mathbf{v}=-\mathbf{T}(\mathbf{p}-p_0),$$

where $\mathbf{p} = (p_1, p_2, \dots, p_n)^T$. Impose exactness for any *linear* pressure field $p = \mathbf{x}^T \mathbf{a} + c$ (which gives velocity equal $-\mathbf{K}\mathbf{a}$):

$$v_i = -A_i \mathbf{n}_i^{\mathsf{T}} \mathbf{K} \mathbf{a}$$

 $p_i - p_0 = (\mathbf{x}_i - \mathbf{x}_0)^T \mathbf{a}.$

As a result, \mathbf{T} must satisfy

$$\mathbf{T} \times \mathbf{C} = \mathbf{N} \times \mathbf{K}$$

where
$$\mathbf{C}(i,:) = (\mathbf{x}_i - \mathbf{x}_0)^T$$
 and $\mathbf{N}(i,:) = A_i \mathbf{n}_i^T$

Family of valid solutions: $\mathbf{T} = \frac{1}{|E|} \mathbf{N} \mathbf{K} \mathbf{N}^T + \mathbf{T}_2,$

where \mathbf{T}_2 is such that \mathbf{T} is s.p.d. and $\mathbf{T}_2\mathbf{C}=\mathbf{O}.$

Imposing continuity across edges/faces and conservation yields a *hybrid* system:

$$\left(\begin{array}{ccc} \mathbf{A} & \mathbf{B} & \mathbf{C} \\ \mathbf{B}^T & \mathbf{O} & \mathbf{O} \\ \mathbf{C}^T & \mathbf{O} & \mathbf{O} \end{array} \right) \left(\begin{array}{c} \mathbf{v} \\ \mathbf{p}_{\mathsf{cells}} \\ \mathbf{p}_{\mathsf{faces}} \end{array} \right) = \mathsf{RHS}$$

 $\label{eq:Reduces} \begin{array}{c} \downarrow \\ \mbox{Reduces to s.p.d. system for} \\ \mathbf{p}_{\mbox{faces}}. \end{array}$

SINTEF

Mimetic Finite Difference Methods General method applicable to general polyhedral cells

Standard method + skew grids = grid-orientation effects

 \mathbf{K} : homogeneous and isotropic, symmetric well pattern \longrightarrow symmetric flow

Streamlines with two-point method

Streamlines with mimetic method

 There is freedom in choosing the inner product (T_2) , so that e.g.,

- MFDM coincides with TPFA on Cartesian grids
- MFDM coincides with MFEM on Cartesian grids

Positive definite system is guaranteed. Monotonicity properties are similar as for MPFA.

Challenge:

Local adjustment of the inner product to reduce the condition number (and appearance of cycles) on complex grids.

Nov 2007 < D > 15/62

How to approach this vision ...

Research vision:

Direct simulation of complex grid models of highly heterogeneous and fractured porous media - a technology that bypasses the need for upscaling.

Geological models as direct input to

.... efficient multiscale simulation techniques

Applied Mathematics

Nov 2007 ◀ □ ▶ 16/62

How to approach this vision ...

Research vision:

Direct simulation of complex grid models of highly heterogeneous and fractured porous media - a technology that bypasses the need for upscaling.

Geological models as direct input to

.... efficient multiscale simulation techniques

multiscale pressure solver

fast transport solvers

Nov 2007 ◀ □ ▶ 16/62

Key Technology: Multiscale Pressure Solvers Efficient flow solution on complex grids – without upscaling

Basic idea:

- Upscaling and downscaling in one step
- Pressure on coarse grid (subresolution near wells)
- Velocity with subgrid resolution everywhere

Example: Layer 36 from SPE 10

Pressure field computed with mimetic FDM

Pressure field computed with 4M

Velocity field computed with mimetic FDM

Velocity field computed with 4M

Nov 2007 < □ ► 17/62

Standard upscaling:

Nov 2007 < D > 18/62

Standard upscaling:

₽

Coarse grid blocks:

Standard upscaling:

₽

Coarse grid blocks:

Flow problems:

Nov 2007 ◀ □ ▶ 18/62

Standard upscaling:

Coarse grid blocks:

↓ ↑

Flow problems:

Nov 2007 ◀ □ ▶ 18/62

Standard upscaling:

↓ ↑

Coarse grid blocks:

↓ ↑

Flow problems:

() SINTEF

Nov 2007 ◀ □ ▶ 18/62

Standard upscaling:

↓ ↑

Coarse grid blocks:

↓ ↑

Flow problems:

Nov 2007 < D > 18/62

Standard upscaling:

↓ ↑

Multiscale method:

Coarse grid blocks:

↓ ↑

Flow problems:

() SINTEF

Nov 2007 < D > 18/62

Standard upscaling:

Coarse grid blocks:

↓ ↑

↓ ↑

Multiscale method:

Coarse grid blocks:

P=1

Nov 2007 ∢ □ ▶ 18/62

Standard upscaling:

Multiscale method:

↓ ↑

Coarse grid blocks:

↓ ↑

Flow problems:

Nov 2007 < D > 18/62

Standard upscaling:

↓ ↑

Multiscale method:

Coarse grid blocks:

q=1

Flow problems:

 $\alpha = 1$

↓ ↑ Flow problems:

() SINTEF

Coarse grid blocks:

Nov 2007 ∢ □ ▶ 18/62

Multiscale Mixed/Mimetic Pressure Solvers

Advantages

Ability to handle industry-standard grids

- highly skewed and degenerate cells
- non-matching cells and unstructured connectivities

Compatible with current solvers

- can be built on top of commercial/inhouse solvers
- can utilize existing linear solvers

More efficient than standard solvers

- automated generation of coarse simulation grids
- easy to parallelize
- less memory requirements than fine-grid solvers

Assume we are given a *fine* grid with permeability and porosity attached to each fine-grid block:

Assume we are given a *fine* grid with permeability and porosity attached to each fine-grid block:

We construct a *coarse* grid, and choose the discretisation spaces U and V^{ms} such that:

Assume we are given a *fine* grid with permeability and porosity attached to each fine-grid block:

We construct a *coarse* grid, and choose the discretisation spaces U and V^{ms} such that:

• For each coarse block T_i , there is a basis function $\phi_i \in U$.

Nov 2007 ◀ □ ▶ 20/62

Assume we are given a *fine* grid with permeability and porosity attached to each fine-grid block:

We construct a *coarse* grid, and choose the discretisation spaces U and V^{ms} such that:

- For each coarse block T_i , there is a basis function $\phi_i \in U$.
- For each coarse edge Γ_{ij} , there is a basis function $\psi_{ij} \in V^{ms}$.

Multiscale Mixed Finite Elements Basis for the velocity field

Velocity basis function ψ_{ij} : unit flow through Γ_{ij} defined as

$$\nabla \cdot \psi_{ij} = \begin{cases} w_i(x), & \text{ for } x \in T_i, \\ -w_j(x), & \text{ for } x \in T_j, \end{cases}$$

and no flow
$$\psi_{ij} \cdot n = 0$$
 on $\partial(T_i \cup T_j)$.

Multiscale space: $V^{ms} = \text{span}\{\psi_{ij} = -\lambda K \nabla \phi_{ij}\}$

Global velocity:

 $v = \sum_{ij} v_{ij} \psi_{ij}$, where v_{ij} are (coarse-scale) coefficients.

Nov 2007 ◀ □ ▶ 21/62

Multiscale Mixed Finite Elements Equation: $\nabla \cdot v = q$, $v = -K\lambda \nabla p$

Discretisation matrices:

$$\begin{pmatrix} B & C \\ C^T & \mathbf{0} \end{pmatrix} \begin{pmatrix} v \\ p \end{pmatrix} = \begin{pmatrix} f \\ g \end{pmatrix},$$

$$b_{ij} = \int_{\Omega} \psi_i K^{-1} \psi_j \, dx,$$

$$c_{ij} = \int_{\Omega} \phi_j \nabla \cdot \psi_i \, dx$$

Subgrid solvers on corner-point grids

- MFEM on tetrahedral subdivision of hexahedral cells
- TPFA or MPFA finite-volume methods
- mimetic finite-difference methods

can all be recast in mixed form as a *discrete* approximation of the bilinear form

$$\int_{\Omega} u^T (\lambda \mathbf{K})^{-1} v \approx \sum_{\Gamma_i} \mathbf{u}_i \mathbf{M}_i \mathbf{v}_i,$$

using fluxes \mathbf{u}_i and \mathbf{v}_i over cell-faces Γ_i

SINTEF

Nov 2007 ◀ □ ▶ 22/62

Multiscale Mixed/Mimetic Method Workflow

At initial time:

For each time step:

- (Recompute basis functions)
- Assemble and solve coarse-grid system
- Recover fine-grid velocity
- Solve fluid-transport equations

Nov 2007 ∢ □ ▷ 23/62

Computational efficiency on a $128 \times 128 \times 128$ example

Multiscale solvers are not necessarily faster than a good direct solver for a *single* pressure solution

() SINTEF

Nov 2007 ◀ □ ▶ 24/62

Direct solution may be more efficient, so why bother with multiscale?

- Full simulation: $O(10^2)$ time steps.
- Basis functions need not be recomputed

Also:

- Possible to solve very large problems
- Easy parallelization

Water cuts obtained by *never* updating basis functions:

Nov 2007 ◀ □ ► 26/62

Improved accuracy by *adaptive* updating of basis functions:

Nov 2007 ◀ □ ▶ 27/62

Application 1: Fast Reservoir Simulation on Geomodels 10th SPE Comparative Solution Project

Nov 2007 < D > 28/62

Application 1: Fast Reservoir Simulation on Geomodels Robustness wrt coarse grid on Layer 85

Logarithm of horizontal permeability

Coarse grid (12 x 44) saturation profile

Coarse grid (6 x 22) saturation profile

Coarse grid (3 x 11) saturation profile

Reference saturation profile

MsMFEM saturation profile

MsMFEM saturation profile

MsMFEM saturation profile

Nov 2007 ∢ □ ▷ 29/62

Application 1: Fast Reservoir Simulation on Geomodels Robustness wrt heterogeneity

Nov 2007 ∢ □ ▶ 30/62

Application 1: Fast Reservoir Simulation on Geomodels

Three-phase black-oil simulation on real-field model

Nov 2007 🔍 🗆 🕨 31/62

Application 2: Automated Generation of Coarse Grids Block in coarse grid: connected set of cells from geomodel

Coarse grid = uniform partitioning in index space

Nov 2007 ∢ □ ▶ 32/62

Application 2: Automated Generation of Coarse Grids Wavy depositional bed, a real-life model

Coarse grid	Isotropic	Anisotropic	Heterogeneous
10 imes 10 imes 10	0.026	0.143	0.094
$6 \times 6 \times 2$	0.042	0.169	0.141
$3 \times 3 \times 1$	0.065	0.127	0.106
5 imes5 imes10	0.060	0.138	0.142

Nov 2007 ◀ □ ► 33/62

Application 2: Automated Generation of Coarse Grids Simple guidelines for choosing good coarse grids

- Minimize bidirectional flow over interfaces:
 - Avoid unnecessary irregularity ($\Gamma_{6,7}$ and $\Gamma_{3,8})$
 - Avoid single neighbors (T_4)
 - Ensure that there are faces transverse to flow direction (T₅)
- Blocks and faces should follow geological layers (T₃ and T₈)
- Blocks should adapt to flow obstacles whenever possible
- For efficiency: minimize the number of connections
- Avoid having too many small blocks

🕥 SINTEF

Application 3: Near-Well Modelling / Improved Well-Model

Fine grid to annulus, block for each well segment

- No well model needed.
- Drift-flux wellbore flow.

Nov 2007 ∢ □ ▶ 35/62

Application 4: History Matching on Geological Models Generalized travel-time inversion on million-cell model

Assimilation of production data to calibrate model

- 1 million cells, 32 injectors, and 69 producers
- $\bullet~2475~\text{days}\approx7$ years of water-cut data

Analytical sensitivities along streamlines + travel-time inversion (quasi-linearization of misfit functional)

Computation time: \sim 17 min on a desktop PC (6 iterations).

 Challenges and unresolved problems

Three-phase black-oil:

- Up and running on real-field models from industry
- More work is needed with respect to accuracy (strong pressure gradients, adaptivitiy, etc)

Modelling of wells:

- Several solutions (one block per perforation, wells created as inner boundary conditions, etc)
- Will investigate adaptivity to increase robustness/accuracy

Fractures and faults:

- Using mimetic: mostly a question of grid preprocessing
- Inclusion of capillary forces
- Extentions to Stokes-Brinkman using Taylor-Hood elements

How to approach this vision ...

Research vision:

Direct simulation of complex grid models of highly heterogeneous and fractured porous media - a technology that bypasses the need for upscaling.

Geological models as direct input to

.... efficient multiscale simulation techniques

multiscale pressure solver

fast transport solvers

Nov 2007 ◀ □ ▶ 38/62

How to approach this vision ...

Research vision:

Direct simulation of complex grid models of highly heterogeneous and fractured porous media - a technology that bypasses the need for upscaling.

Geological models as direct input to

.... efficient multiscale simulation techniques

nonunform coarsening reordering streamlines

Nov 2007 ◀ □ ▶ 38/62

Adaptive Model Reduction of Transport Grids Flow-based nonuniform coarsening

Task

Given the ability to model velocity on geomodels and transport on coarse grids:

Find a suitable coarse grid that best resolves fluid transport and minimizes accuracy loss.

SPE 10, Layer 37

 Logarithm of permeability: Layer 37 in SPE10
 Logarithm of velocity on geomodel

 Logarithm of velocity on non-uniform coarse grid: 208 cells
 Logarithm of velocity on Cartesian coarse grid: 220 cells

Step 1: Segment $\ln |v|$ into N level sets

Robust choice: N = 10

Step 1: 1411 cells

Nov 2007 ◀ □ ▶ 40/62

Step 1: Segment $\ln |v|$ into N level sets

Robust choice: N = 10

Step 1: 1411 cells

Step 2: Combine small blocks (|B| < c) with a neighbour

 $\begin{array}{l} \text{Merge } B \text{ and } B' \text{ if} \\ \frac{1}{|B|} \int_B \ln |v| \approx \\ \frac{1}{|B'|} \int_{B'} \ln |v| \end{array}$

Step 2: 94 cells

() SINTEF

Nov 2007 ◀ □ ▶ 40/62

Step 3: Refine blocks with too much flow $(\int_B \ln |v| dx > C)$

Build B' inwards from ∂B Restart with $B = B \setminus B'$

Step 3: 249 cells

Step 3: Refine blocks with too much flow $(\int_B \ln |v| dx > C)$

Build B' inwards from ∂B Restart with $B = B \setminus B'$

Step 3: 249 cells

Step 4: Combine small blocks with a neighbouring block

Step 2 repeated

Step 4: 160 cells

() SINTEF

Applied Mathematics

Nov 2007 ◀ □ ▶ 41/62

Adaptive Model Reduction of Transport Grids Example 1: Layer 68, SPE10, 5-spot well pattern

Geomodel: $60 \times 220 = 13200$

Uniform: $15 \times 44 = 660$

Non-uniform: 619–734 blocks

Observations:

- First 35 layers: 22 \Rightarrow uniform grid adequate.
- Last 50 layers: \implies uniform grid inadequate.
- Non-uniform grid gives consistent results for all layers.

Nov 2007 ◀ □ ▶ 42/62

Adaptive Model Reduction of Transport Grids Example 1: Layer 68, SPE10, 5-spot well pattern

Logarithm of permeability: Layer 68

Geomodel: 13200 cells

Logarithm of velocity on Cartesian coarse grid

Coarse grid: 660 cells

Logarithm of velocity on geomodel

Logarithm of velocity on non-uniform coarse grid

Coarse grid: 649 cells

Coarse grid: 264 cells

Logarithm of velocity on non-uniform coarse grid

Coarse grid: 257 cells

() SINTEF

Applied Mathematics

Nov 2007 ◀ □ ▶ 43/62

Adaptive Model Reduction of Transport Grids Example 2: Depositional bed, 20 lognormal realizations, q5-spot

Observations:

- Coarsening algorithm applicable to unstructured grids
 - accuracy consistent with observations for SPE10 models.
- Results obtained with uniform grid (in index space) inaccurate.

Adaptive Model Reduction of Transport Grids Example 3: Fracture networks

() SINTEF

Applied Mathematics

Nov 2007 ◀ □ ▶ 45/62

Adaptive Model Reduction of Transport Grids Opportunities and unresolved questions

Opportunities

- Utilization within optimization and data integration workflows?
- Adaptive model reduction as alternative to proxy models?

Unresolved questions

- Capillary forces initial ideas are promising
- Three-phase black oil not tested yet
- Applicability to grids with large differences in cell sizes

Nov 2007 4 D > 46/62

How to approach this vision ...

Research vision:

Direct simulation of complex grid models of highly heterogeneous and fractured porous media - a technology that bypasses the need for upscaling.

Nov 2007 ◀ □ ▶ 47/62

How to approach this vision ...

Research vision:

Direct simulation of complex grid models of highly heterogeneous and fractured porous media - a technology that bypasses the need for upscaling.

Nov 2007 ◀ □ ▶ 47/62

Fast Methods Based on Topological Sorting

Flow models are typically on the form

$$au + \mathbf{v} \cdot \nabla f(u) = b(u), \qquad u \text{ given on } \partial \Omega^-$$

Examples:

- Steady-state tracer: $\mathbf{v} \cdot \nabla c = \mathbf{0}$
- Time-of-flight: $\mathbf{v} \cdot \nabla \tau = \phi$
- Implicit schemes for multiphase/multicomponent transport:

$$S^{n+1} + \Delta t \mathbf{v} \cdot \nabla f(S^{n+1}) = \Delta t q(S^{n+1}) + S^n$$

Basic idea

- Utilize the unidirectional flow property to solve cell by cell
- High order: discontinous Galerkin + upwind flux to preserve unidirectional flow property

🕥 SINTEF

Nov 2007 4 🗆 🕨 48/62

Fast Methods Based on Topological Sorting Motivation: Implicit scheme in 1D

First-order upwind scheme ($v_k > 0$, $\forall k$):

$$\frac{\phi}{\Delta t}(S_k^{n+1} - S_k^n) + \frac{1}{\Delta x}\left(v_{k-1}f(S_{k-1}^{n+1}) - v_kf(S_k^{n+1})\right) = Q_k(S_k^{n+1})$$

Lower triangular matrix \implies equations can be solved in sequence

Nov 2007 ◀ □ ▶ 49/62

Fast Methods Based on Topological Sorting Motivation: Implicit scheme in 1D

First-order upwind scheme ($v_k > 0$, $\forall k$):

$$\frac{\phi}{\Delta t}(S_k^{n+1} - S_k^n) + \frac{1}{\Delta x}\left(v_{k-1}f(S_{k-1}^{n+1}) - v_kf(S_k^{n+1})\right) = Q_k(S_k^{n+1})$$

Lower triangular matrix \implies equations can be solved in sequence

Multidimensions

Same idea applies by using a *topological sort* of the directed graph of fluxes

Nov 2007 4 D > 49/62
Grid and flux matrix

Graph interpretation

() SINTEF

Nov 2007 ∢ □ ▶ 50/62

Grid and flux matrix

Graph interpretation

() SINTEF

Grid and flux matrix

Graph interpretation and topological sorting

Flattened graph (unidirectional)

() SINTEF

Grid and flux matrix

Graph interpretation and topological sorting

Flattened graph (unidirectional)

() SINTEF

Grid and flux matrix

Graph interpretation and topological sorting

Flattened graph (unidirectional)

() SINTEF

Grid and flux matrix

Graph interpretation and topological sorting

Flattened graph (unidirectional)

() SINTEF

Grid and flux matrix

Graph interpretation and topological sorting

Flattened graph (unidirectional)

() SINTEF

Grid and flux matrix

Graph interpretation and topological sorting

1

Flattened graph (unidirectional)

() SINTEF

Grid and flux matrix

Graph interpretation and topological sorting

Flattened graph (unidirectional)

 $1 \rightarrow 4$

Grid and flux matrix

Graph interpretation and topological sorting

Flattened graph (unidirectional)

 $1 \rightarrow 4 \rightarrow 7$

SINTEF

Grid and flux matrix

Graph interpretation and topological sorting

Flattened graph (unidirectional)

 $1 \rightarrow 4 \rightarrow 7 \rightarrow 8$

🕥 SINTEF

Grid and flux matrix

Graph interpretation and topological sorting

Flattened graph (unidirectional)

 $1 \rightarrow 4 \rightarrow 7 \rightarrow 8$

Grid and flux matrix

Graph interpretation and topological sorting

Flattened graph (unidirectional)

 $1 \rightarrow 4 \rightarrow 7 \rightarrow 8$

Grid and flux matrix

Graph interpretation and topological sorting

Flattened graph (unidirectional)

 $1 \rightarrow 4 \rightarrow 7 \rightarrow 8$

() SINTEF

Grid and flux matrix

Graph interpretation and topological sorting

Flattened graph (unidirectional)

 $1 \rightarrow 4 \rightarrow 7 \rightarrow 8$

Grid and flux matrix

Graph interpretation and topological sorting

SINTEF

Grid and flux matrix

Graph interpretation and topological sorting

SINTEF

Grid and flux matrix

Graph interpretation and topological sorting

SINTEF

Applied Mathematics

Grid and flux matrix

Graph interpretation and topological sorting

Grid and flux matrix

Graph interpretation and topological sorting

Fast Methods Based on Topological Sorting Application 1: Delineation of reservoir volumes

SPE 10, Model 2, $60 \times 220 \times 85$ (1.122 million grid blocks)

Stationary tracer:	Timir	ngs:		
Solve ∇x for invelle		order	dof's	time
Solve $\mathbf{v} \cdot \mathbf{v} c = q_i$ for <i>i</i> wens		0	1	3.1 sec
Contour $c = 0.5$		1	4	9.9 sec
		2	10	86.8 sec
Scheme: $dG(n)$ +upwinding	CPU: AMD Athlon X2 4400+			

() SINTEF

Time-of-flight

- Travel time for a neutral particle injected at boundary/well
- Timelines for single phase flow

Layer 1 of SPE 10

 $64\times 64\times 16$ grid, vertical q5-spot

Nov 2007 < D > 53/62

Key idea:

Implicit time discretization: element-wise Newton-Raphson solution gives high efficiency.

- $\mathcal{O}(n)$ operations for n unknowns
- Local control over Newton iteration.
- Small memory requirements.
- Small, simple code.
- Well-known conservative discretisation.
- Valid for general polyhedral grids.

Water-cut, SPE 10, Model 2

Fast Methods Based on Topological Sorting Application 4: Fracture networks

Nov 2007 ◀ □ ► 55/62

Opportunities

- Simple way of generating streamline-type data
- Utilization within optimization and data integration workflows?

Unresolved questions

- Efficient linear solvers for various loop sizes
- Elimination/reduction of loops
- How to prevent oscillations for dG(n), n > 1
- Operator splitting (capillary/gravity forces)

Nov 2007 ◀ □ ► 56/62

How to approach this vision ...

Research vision:

Direct simulation of complex grid models of highly heterogeneous and fractured porous media - a technology that bypasses the need for upscaling.

How to approach this vision ...

Research vision:

Direct simulation of complex grid models of highly heterogeneous and fractured porous media - a technology that bypasses the need for upscaling.

- Pollock (88) analytic tracing of streamlines on Cartesian grids
 - linear interpolation of fluxes in each direction
 - analytical formula for increment within each cell
- Prevost et al. (02) extension of Pollock's method to irregular grids
 - isoparametric transformation to unit reference cube
 - linear flux interpolation scaled by Jacobi determinant at element midpoint
 - analytic streamline path mapped to physical space
- Jimenez et al. (05,08)
 - pseudo-time of flight (improved Jacobi)
 - tracing across faults (collapsed cells)
- Matringe et al. (05,06) higher-order MFEM velocity spaces
- Hægland et al. (07) corner-velocity interpolation

Nov 2007 ∢ □ ▶ 58/62

To handle degenerate and nonmatching cells, we:

- Subdivide faces/edges to make matching corner-point grid
- Use a global Delaney triagularization
 → each regular hexahedral cell is
 subdivided into six tetrahedra
- Reconstruct fluxes on tetrahedra
- Trace streamlines analytically within each tetrahedron (constant velocity)

This approach should preserve uniform flow

Future apporach: Pollock (or similar) for regular cells, tetrahedral reconstruction for degenerate and nonmatching cells?

Streamline simulation for CO₂:

- efficient 1-D solvers for operator splitting
- transition from injection- to gravity-driven flow
- circular streamlines

The research will enable simulator technology to better aid more work processes – by striking balances between reduced computational time, geological representation, and complexity of flow physics

A key to efficient simulation methods - operator splitting:

- Multiscale pressure solvers:
 - Upscaling and downscaling in one step
 - Robust and efficient alternative to upscaling
 - Flow field on coarse, intermediate, and fine grid
- Fast transport solvers, (coarse-intermediate-fine grids):
 - Adaptive nonuniform coarsening
 - Discontinuous Galerkin with topological sorting
 - Streamlines

Summary

Nov 2007 ∢ □ ▶ 62/62