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Multiscale Pressure Solvers
Efficient flow solution on complex grids – without upscaling

Basic idea:

Upscaling and downscaling in one step

Pressure on coarse grid (subresolution near wells)

Velocity with subgrid resolution everywhere

Example: Layer 36 from SPE 10
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Multiscale Pressure Solvers
Two main contenders...

Multiscale mixed finite elements

Developed by SINTEF

Main focus on complex grids

Corner-point grids in 3D

Triangular/nonuniform/PEBI

Automated coarsening

+ Stokes–Brinkman, wells, black-oil
Applications: history match, optimization

Multiscale finite volumes

Developed by Jenny/Lee/Tchelepi/..

Focus on flow physics

Gravity and capillarity

Black-oil

Compressibility

Complex wells

Only for Cartesian grids, so far.
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Geological Models as Direct Input to Simulation
Complex reservoir geometries

Challenges:

Industry-standard grids are often nonconforming and contain
skewed and degenerate cells

There is a trend towards unstructured grids

Standard discretization methods produce wrong results on
skewed and rough cells

The combination of high aspect and anisotropy ratios can give
very large condition numbers

Corner point: Tetrahedral: PEBI:
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The MsMFE Method in a Nutshell
From upscaling to multiscale methods

Standard upscaling:

⇓

⇑

Coarse grid blocks:

⇓

⇑

Flow problems:

Multiscale method:

⇓

⇑

Coarse grid blocks:

⇓

⇑

Flow problems:
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The MsMFE Method in a Nutshell
Mixed formulation for incompressible flow

Mixed formulation:

Find (v, p) ∈ H1,div
0 × L2 such that∫

(λK)−1u · v dx−
∫
p∇ · u dx = 0, ∀u ∈ H1,div

0 ,∫
`∇ · v dx =

∫
q` dx, ∀` ∈ L2.

Multiscale discretization:

Seek solutions in low-dimensional subspaces in which local
fine-scale properties are incorporated into the basis functions
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The MsMFE Method in a Nutshell
Linear system and basis functions

Discretisation matrices:

(
B C
CT 0

) (
v
p

)
=

(
f
g

)
,

bij =

∫
Ω
ψi

(
λK

)−1
ψj dx,

cik =

∫
Ω
φk∇ · ψi dx

Raviart–Thomas: Multiscale basis function:
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The MsMFE Method in a Nutshell
Grids and basis functions

We assume we are given a fine grid with permeability and porosity
attached to each fine-grid block.

We construct a coarse grid, and choose the discretisation spaces V
and Ums such that:

For each coarse block Ti, there is a basis function φi ∈ V .

For each coarse edge Γij , there is a basis function ψij ∈ Ums.
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The MsMFE Method in a Nutshell
Local flow problems

For each coarse edge Γij , define a basis
function with unit flux through Γij and
no flow across ∂(Ti ∪ Tj).

Homogeneous medium Heterogeneous medium

Local flow problem:

ψij = −λK∇φij , ∇ · ψij =

{
wi(x), for x ∈ Ti,

−wj(x), for x ∈ Tj ,

with boundary conditions ψij · n = 0 on ∂(Ti ∪ Tj).

Global velocity:

v =
∑

ij vijψij , where vij are (coarse-scale) coefficients.
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The MsMFE Method in a Nutshell
Automated generation of coarse grids

The MsMFE method allows fully automated coarse gridding
strategies: grid blocks need to be connected, but can have
arbitrary shapes

Corner-point grids: the coarse blocks are logically Cartesian in
index space
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The MsMFE Method in a Nutshell
Workflow with automated upgridding in 3D

1) Coarsen grid by uniform partitioning in
index space for corner-point grids

44 927 cells
↓
148 blocks

9 different coarse blocks

3) Compute basis functions

∇·ψij =

(
wi(x),

−wj(x),

for all pairs of blocks

2) Detect all adjacent blocks

4) Block in coarse grid: component for
building global solution
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The MsMFE Method in a Nutshell
Computational efficiency: order-of-magnitude argument, 128× 128× 128 grid

Multigrid more efficient when computing pressure once.
Why bother with multiscale pressure solvers?

Full simulation: O(102) time
steps.

Basis functions need not be
recomputed

Also:

Possible to solve very large
problems

Easy parallelization
8x8x8   16x16x16 32x32x32 64x64x64

0
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8
x 107

Computation of basis functions
Solution of global system

Fine scale solution
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The MsMFE Method in a Nutshell
Example: 10th SPE Comparative Solution Project

SPE 10, Model 2:
Producer A

Producer B

Producer C

Producer D

Injector

Tarb
ert

Upper
Ness

Fine grid: 60× 220× 85
Coarse grid: 5× 11× 17
2000 days production

4M + streamlines:
2 min 22 sec on 2.4 GHz
desktop PC

Water-cut curves at the four producers
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Implementation Details for MsMFE
There are certain choices....

Choice of weighting function in definition of basis functions

Boundary conditions (overlap and global information)

Assembly of linear system

Fine-grid discretization

Generation of coarse grids
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Implementation Details for MsMFE
Choice of the weight function

Interpretation of the weight function:

(∇ · v)|Ti =
∑
j

wi∇ · (vijψij) = wi
∑
j

vij

= wi

∫
∂Ti

v · nds = wi

∫
Ti

∇ · v

That is, wi distributes ∇ · v among the cells in the coarse grid

Different roles:

Incompressible flow: ∇ · v = q
Compressible flow: ∇ · v = q − ct∂tp−

∑
j cjvj · ∇p
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Implementation Details for MsMFE
Weight function: incompressible flow

For incompressible flow, we have that

(∇ · v)|Ti = wi
∑
j

vij ,
∑
j

vij =

{
0, if

∫
Ti
qdx = 0,∫

Ti
qdx, otherwise

Thus ∫
Ti

qdx = 0 ⇒ ∇ · v = 0, ∀wi > 0∫
Ti

qdx 6= 0 ⇒ ∇ · v = q, if wi =
q∫

Ti
qdx
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Implementation Details for MsMFE
Choice of weight function: uniform

Uniform source:

wi(x) =
1

|Ti|

vh

vl

lk

kh

Gijp=1 p=0jTiT

Ω Ω

Ω Ω

1 2

3 4

low (kl) and high (kh) permeability streamlines from basis function
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Implementation Details for MsMFE
Choice of weight function: scaled

Scaled source:

wi(x) =
trace(K(x))∫

Ti
trace(K(ξ)) dξ
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Implementation Details for MsMFE
Choice of weight function: compressible flow

Compressible flow:

(∇ · v)|Ti = wi
∑
j

vij ,

∑
j

vij =

∫
Ti

(
q − ct

∂p

∂t
+

∑
cαvα · ∇p

)
dx

Ideas from incompressible flow do not apply directly:

wi ∝ q concentrates compressibility effects where q 6= 0

wi ∝ K overestimates ∇ · v in high-permeable zones and
underestimates in low-permeable zones

Better choice:

wi = φR
Ti
φdx

Motivation: ct∂tp ∝ φ
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Domain of Support Basis Functions
Here with overlap (green region)

Ωi Ωj

Ωij
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Domain of Support Basis Functions
Here with overlap (green region)
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Domain of Support Basis Functions
Strategies for handeling wells in the MsMFE method

Strategy

Standard: Use initial partitioning as is
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Domain of Support Basis Functions
Strategies for handeling wells in the MsMFE method

Strategy

Adapted: Initial partition altered to put wells near block center
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Domain of Support Basis Functions
Strategies for handeling wells in the MsMFE method

Strategy

Refined: Altered partition further sub-divided near wells
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Domain of Support Basis Functions
Strategies for handeling wells in the MsMFE method

Strategy

Well oversampling: Support domain for well/block enlarged to
include additional cells about well trajectory
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Domain of Support Basis Functions
Strategies for handeling wells in the MsMFE method

Strategy

Well & block oversampling: Well oversampling + inclusion of
additional cells about coarse blocks
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Implementation Details for MsMFE
Discretization on real geometries

Corner-point grids:

areal 2D mesh of vertical or
inclined pillars

each volumetric cell is restriced by
four pillars

each cell is defined by eight corner
points, two on each pillar
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Implementation Details for MsMFE
Cell geometries are challenging from a discretization point-of-view

Skewed and deformed grid
blocks:

Non-matching cells:

Very high aspect ratios (and centroid outside the cell):

Dimensions: 800 m × 800 m × 0.25 m
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Implementation Details for MsMFE
The mimetic finite difference method

Mimetic finite-difference methods may be interpreted as a
finite-volume counterpart of mixed finite-element methods.

Key features:

Applicable for models with general polyhedral grid-cells.

Allow easy treatment of non-conforming grids with complex
grid-cell geometries (including curved faces).

Generic implementation: same code applies to all grids (e.g.,
corner-point/PEBI, matching/non-matching, ...).
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Implementation Details for MsMFE
The mimetic finite difference method, Brezzi et al., 2005

Express fluxes v = (v1, v2, . . . , vn)T as:

v = −T (p− p0),

where p = (p1, p2, . . . , pn)T.

Impose exactness for any linear pressure
field p = xTa + c (which gives velocity
equal to −Ka):

vi = −Ain
T
i Ka

pi − p0 = (xi − x0)
Ta.

As a result, T must satisfy

where C(i, :) = (xi − x0)
T and

N(i, :) = Ain
T
i
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T
i Ka

pi − p0 = (xi − x0)
Ta.

As a result, T must satisfy

where C(i, :) = (xi − x0)
T and

N(i, :) = Ain
T
i

Family of valid solutions:

T =
1

|E|
NKNT + T 2,

where T 2 is such that T is s.p.d.
and T 2C = O.

Imposing continuity across
edges/faces and conservation
yields a hybrid system:0@ B C D

CT O O

DT O O

1A 0@v
p
π

1A = RHS

⇓

Reduces to s.p.d. system for face
pressures π.
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Treating Wells as Boundary Conditions
Discrete system still amenable to schur complement reduction

Discrete Pressure System
B 0 C D 0
0 Bw Cw 0 Dw

CT CT
w 0 0 0

DT 0 0 0 0
0 DT

w 0 0 0




v
−qw
−p

π
pw

 =


0
0
0
0

−qw,tot


Well Model, Peaceman

−qki = −λt(ski
)WI ki (pEki

− pwk
), i = 1, . . . , nk

qktot =

nk∑
i=1

qki .
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Implementation Details for MsMFE
Mimetic: method applicable to general polyhedral cells

Standard method + skew grids = grid-orientation effects

K: homogeneous and isotropic,
symmetric well pattern
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Implementation Details for MsMFE
Mimetic: the role of the inner product

There is freedom in choosing the inner product (T2), so that e.g.,

MFDM coincides with TPFA on Cartesian grids

MFDM coincides with MFEM on Cartesian grids

Positive definite system is guaranteed. Monotonicity properties are
similar as for MPFA.

Challenge:

Local adjustment of the inner product to reduce the condition
number (and appearance of cycles) on complex grids.
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Implementation Details for MsMFE
Automated generation of coarse grids

(Unique) grid flexibility:

Given a method that can solve local flow problems on the subgrid,
the MsMFE method can be formulated on any coarse grid in which
the coarse blocks consist of a connected collection of fine-grid cells
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Implementation Details for MsMFE
Coarse grid generation

Problems occur when a basis function tries to force flow through a flow
barrier

problem no problem

Can be detected automatically through the indicator

vij = ψij · (λK)−1ψij

If vij(x) > C for some x ∈ Ti, then split Ti and generate basis functions

for the new faces
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Implementation Details for MsMFE
Coarse grid generation

Problems if there is a strong bi-directional flow over a coarse-grid
interface

fine grid multiscale

Can be detected automatically through the indicator

|
∫

Γij

v · nds| �
∫

Γij

|v · n| ds, c ≤
∫

Γij

|v · n| ds

If so, split Ti and generate basis functions for the new faces.

Applied Mathematics 05/12/2008 31/63



Implementation Details for MsMFE
Coarse grid generation

Problems if there is a strong bi-directional flow over a coarse-grid
interface

fine grid multiscale

Can be detected automatically through the indicator

|
∫

Γij

v · nds| �
∫

Γij

|v · n| ds, c ≤
∫

Γij

|v · n| ds

If so, split Ti and generate basis functions for the new faces.

Applied Mathematics 05/12/2008 31/63



Implementation Details for MsMFE
Simple guidelines for choosing good coarse grids

1 Minimize bidirectional flow over
interfaces:

Avoid unnecessary irregularity
(Γ6,7 and Γ3,8)
Avoid single neighbors (T4)
Ensure that there are faces
transverse to flow direction (T5)

2 Blocks and faces should follow
geological layers (T3 and T8)

3 Blocks should adapt to flow obstacles
whenever possible

4 For efficiency: minimize the number of
connections

5 Avoid having too many small blocks

1 2 3
4

5

6 7 8

Flow direction  Flow direction  Flow direction  Flow direction  Flow direction  Flow direction  

1 3
2

5

6 7 8

Flow direction  Flow direction  
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Implementation Details for MsMFE
Example: adaption to flow obstacles
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The Latest News About the MsMFE Method
Four new developments

Four new developments in the last year:

Extension of the MsMFE method to compressible three-phase
flow

A prototype implementation in FrontSim, applied to fractured
media

Extension of the MsMFE method to the Stokes-Brinkman
equations to model flow in vuggy and naturally-fractured
porous media

Combination of the MsMFE method and the flow-based
nonuniform coarsening method to give a very efficient solver
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MsMFE for Compressible Black-Oil Models
Fine-grid formulation

Semi-discrete pressure equation

ct
pn

ν − pn−1

∆t
+∇ · ~un

ν − ζn
ν−1~u

n
ν−1 ·K

−1~un
ν = q, ~un

ν = −Kλ∇pn
ν

Discretization using a mimetic method

uE = λT E(pE − πE), T E = |E|−1NEKENT
E + T̃ E

NE : face normals, XE : vector from face to cell centroids,
T̃ E chosen arbitrarily provided T̃ EXE = 0.

Hybrid system: B C D

CT − V T
ν−1 P 0

DT 0 0

 uν

−pν

πν

 =

 0
Ppn−1 + q

0

 ,
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MsMFE for Compressible Black-Oil Models
Coarse-grid formulation

 ΨTBfΨ ΨTCfI ΨTDfJ
IT(Cf − V f )

TΨ ITP fI 0
J TDT

fΨ 0 0

 u
−p

π

 =

 0
ITP fp

n
f

0


Ψ – velocity basis functions
Φ – pressure basis functions
I – prolongation from blocks to cells
J – prolongation from block faces to cell faces

New feature: fine-scale pressure

pf ≈ Ip + ΦDλu, Dλ = diag(λ0
i/λi)
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MsMFE for Compressible Black-Oil Models
Example 1: tracer transport in gas (Lunati&Jenny 2006)
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MsMFE for Compressible Black-Oil Models
Example 2: block with a single fault
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MsMFE for Compressible Black-Oil Models
Example 3: a model with five faults
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MsMFE Prototype Solver in FrontSim
Example: a dense system of fracture corridors

800× 800 80× 80 upscaled 80× 80 multiscale
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MsMFE Prototype Solver in FrontSim
Example: SPE 10 with fracture corridors

x-y permeability saturation, reference saturation, multiscale
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MsMFE Prototype Solver in FrontSim
Example: SPE 10 with fracture corridors

field oil-production rate field water cut

water cut in P1 water cut in P8
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MsMFE for the Stokes–Brinkman Equations
Model equations: Darcy–Stokes vs Stokes–Brinkman

Standard approach:

Porous region (Darcy):

µK−1~uD +∇pD = ~f, ∇ · ~uD = q.

Free-flow region (Stokes):

−µ∇·
`
∇~uS+∇~uT

S

´
+∇pS = ~f, ∇·~uS = q

Problem: requires interface conditions and
explicit geometry

Stokes–Brinkman (following Popov et al.)

µK−1~u+∇p− µ̃∆~u = ~f, ∇ · ~u = q

Here: seamless transition from Darcy to Stokes (with µ = µ̃)
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MsMFE for the Stokes–Brinkman Equations
Basis functions

Local flow problems discretized using Taylor–Hood elements

µK−1 ~ψij +∇ϕij − µ̃∆~ψij = 0, ∇ · ~ψij =

8><>:
wi(~x), if ~x ∈ Ωi,

−wj(~x), if ~x ∈ Ωj ,

0, otherwise,
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MsMFE for the Stokes–Brinkman Equations
Coarse-scale hybrid mixed system

(A−1)
T
ΨTBf

DΨA−1 C D

CT 0 0
DT 0 0


 uc

−pc

λc

 =

 0
qc

0



A – matrix with face areas
Ψ – matrix with basis functions

Bf
D – fine-scale Darcy TH-discretization

Fine-scale flux reconstructed as uf = Ψuc
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MsMFE for the Stokes–Brinkman Equations
Example 1: Model 2 of the 10th SPE Comparative Solution Project
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MsMFE for the Stokes–Brinkman Equations
Example 1: Layer 20 of SPE10
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MsMFE for the Stokes–Brinkman Equations
Example 1: Layer 60 of SPE10 (worst case with injector in low-permeable block)
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MsMFE for the Stokes–Brinkman Equations
Example 2: Vuggy reservoir (short correlation)

Fine-scale model consists of 200× 200 cells
26 random vugs of sizes 1.8–10.4 m2

Permeability in vugs is 107 higher than in matrix

Applied Mathematics 05/12/2008 49/63



MsMFE for the Stokes–Brinkman Equations
Example 3: Fractured reservoir (long correlation)

Fine-scale model consists of 200× 200 cells
14 random fractures of varying length

Permeability in fractures is 107 higher than in matrix

Applied Mathematics 05/12/2008 50/63



MsMFE for the Stokes–Brinkman Equations
Example 4: Vuggy and fractured reservoir (short and long correlation)

Basis functions in x−direction Basis functions in y−direction Permeability and velocity vectors
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MsMFE for the Stokes–Brinkman Equations
Example 4: Vuggy and fractured reservoir (short and long correlation)

Basis functions in x−direction Basis functions in y−direction Permeability and velocity vectors
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Flow-Based Nonuniform Coarsening
Fast saturation solver

Task:

Given the ability to model velocity on geomodels and transport on
coarse grids: Find a suitable coarse grid that best resolves fluid
transport and minimizes loss of accuracy.

Idea (Aarnes & Efendiev):

Use flow velocities to make a nonuniform grid in which each cell
has approximately the same total flow
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Flow-Based Nonuniform Coarsening
Algorithm

1 Segment the domain according to ln |~v|
2 Combine small blocks

3 Split blocks with too large flow

4 Combine small blocks

SPE 10, Layer 37
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Flow-Based Nonuniform Coarsening
Algorithm (for Layer 68 of SPE 10)

Step 1: Segment ln |v| into N level sets

Robust choice: N = 10

Step 1: 1411 cells

Step 2: Combine small blocks (|B| < c) with a neighbour

Merge B and B′ if
1

|B|
∫

B
ln |v| ≈
1

|B′|
∫

B′ ln |v|

Step 2: 94 cells
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Flow-Based Nonuniform Coarsening
Algorithm (for Layer 68 of SPE 10)

Step 3: Refine blocks with too much flow (
∫
B ln |v|dx > C)

Build B′ inwards from ∂B
Restart with B = B \B′

Step 3: 249 cells

Step 4: Combine small blocks with a neighbouring block

Step 2 repeated

Step 4: 160 cells

Applied Mathematics 05/12/2008 55/63



Flow-Based Nonuniform Coarsening
Algorithm (for Layer 68 of SPE 10)

Step 3: Refine blocks with too much flow (
∫
B ln |v|dx > C)

Build B′ inwards from ∂B
Restart with B = B \B′

Step 3: 249 cells

Step 4: Combine small blocks with a neighbouring block

Step 2 repeated

Step 4: 160 cells

Applied Mathematics 05/12/2008 55/63



Flow-Based Nonuniform Coarsening
Example 1: Layer 68, SPE10, 5-spot well pattern
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Non−uniform coarsening
Uniform coarsening

Non−uniform coarsening
Uniform coarsening

Geomodel:
60×220 = 13 200

Uniform:
15× 44 = 660

Non-uniform:
619–734 blocks

Observations:

First 35 layers: ⇒ uniform grid adequate.

Last 50 layers: ⇒ uniform grid inadequate.

Non-uniform grid gives consistent results for all layers.
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Flow-Based Nonuniform Coarsening
Example 1: Layer 68, SPE10, 5-spot well pattern

Geomodel: 13200 cells

Coarse grid: 660 cells Coarse grid: 649 cells

Coarse grid: 264 cells Coarse grid: 257 cells
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Flow-Based Nonuniform Coarsening
Example 2: real-field model
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Flow-Based Nonuniform Coarsening
Example 2: real-field model
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MsMFEM and Nonuniform Coarsening
A perfect companionship?

Both methods fast by themselves, but not optimal if they
communicate via fine grid.

Saturation piecewise constant on coarse saturation grid.

Saturation-solver only requires fine-grid fluxes over coarse-grid
interfaces.

→ Compute coarse mappings as a preprocessing step
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MsMFEM and Nonuniform Coarsening

Multiscale pressure system:ΨTBf (Isn−1)Ψ C D

CT 0 0
DT 0 0

 un

−pn

λn

 =

−DDπn
D

0
vn

N


Coarse-scale transport:

sn = sn−1 + ∆tITΛφ,fI
(
ITV (vn

f )If(sn) + ITq+

)
Reducing computational complexity

rewrite time-dependent block of matrix

ΨTBf (Isn−1)Ψ =

Np∑
k=1

ΨTBf (Ieks
n−1
k )Ψ,

where λ(sn−1
k )ΨTBf (Ieks

n−1
k )Ψ is time-independent

need only store ITV (vn
f )I on coarse-grid interfaces
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MsMFEM and Nonuniform Coarsening
Example: Water-flooding optimization (45 000 cells, real-field model)

p: 4× 9× 2, S: 136 blocks p: 4× 9× 2, S: 291 blocks p: 4× 9× 2, S: 800 blocks

Simulation time (20 time-steps) using simple MATLAB implementation
on standard work-station:

80 sec if updating fine system for every step

< 5 sec if using precomputed coarse mappings
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The GeoScale Project Portfolio
Research funded mainly by the Research Council of Norway

   

Fl
ow

 P
hy

sic
s

Geological representation

Coarse Detailed

Simple

Complex
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• Very fast
• Nearwell modeling

Largescale 
simulation

• Parallelization
• Multimillion   

reservoir cells• Support for timecritical 
processes
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