An Overview of the Multiscale Mixed Finite-Element Method

SINTEF ICT, Department of Applied Mathematics

Multiscale Workshop, Dr. Holms, Geilo, Dec 5, 2008

Applied Mathematics

Basic idea:

- Upscaling and downscaling in one step
- Pressure on coarse grid (subresolution near wells)
- Velocity with subgrid resolution everywhere

Example: Layer 36 from SPE 10

Pressure field computed with mimetic FDM

Pressure field computed with 4M

Velocity field computed with mimetic FDM

Velocity field computed with 4M

Multiscale Pressure Solvers Two main contenders...

Multiscale mixed finite elements

Developed by SINTEF

Main focus on complex grids

- Corner-point grids in 3D
- Triangular/nonuniform/PEBI
- Automated coarsening

+ Stokes–Brinkman, wells, black-oil Applications: history match, optimization

Multiscale finite volumes

Developed by Jenny/Lee/Tchelepi/..

Focus on flow physics

- Gravity and capillarity
- Black-oil
- Compressibility
- Complex wells

Only for Cartesian grids, so far.

05/12/2008 < 🗆 🕨 3/63

Geological Models as Direct Input to Simulation Complex reservoir geometries

Challenges:

- Industry-standard grids are often nonconforming and contain skewed and degenerate cells
- There is a trend towards unstructured grids
- Standard discretization methods produce wrong results on skewed and rough cells
- The combination of high aspect and anisotropy ratios can give *very large* condition numbers

05/12/2008 ∢ □ >

4/63

From upscaling to multiscale methods

Standard upscaling:

From upscaling to multiscale methods

Standard upscaling:

↓ ↑

Flow problems:

From upscaling to multiscale methods

Standard upscaling:

Coarse grid blocks:

 $\downarrow \downarrow$

Flow problems:

From upscaling to multiscale methods

Standard upscaling:

 $\downarrow \downarrow$

Coarse grid blocks:

Flow problems:

From upscaling to multiscale methods

Standard upscaling:

↓ ↑

Coarse grid blocks:

Flow problems:

Multiscale method:

Coarse grid blocks:

Flow problems:

Applied Mathematics

From upscaling to multiscale methods

Standard upscaling:

↓ ↑

Coarse grid blocks:

Flow problems:

() SINTEF

Multiscale method:

\Downarrow

q<u>†</u>1

q=1

Coarse grid blocks:

Flow problems:

q=1 q=-1

Applied Mathematics

From upscaling to multiscale methods

Standard upscaling:

↓ ↑

Coarse grid blocks:

Flow problems:

() SINTEF

Multiscale method:

Coarse grid blocks:

q**∦**1

q=1

Flow problems:

Applied Mathematics

Mixed formulation:

Find
$$(v, p) \in H_0^{1, \operatorname{div}} \times L^2$$
 such that

$$\int (\lambda K)^{-1} u \cdot v \, dx - \int p \nabla \cdot u \, dx = 0, \qquad \forall u \in H_0^{1, \operatorname{div}}$$

$$\int \ell \nabla \cdot v \, dx = \int q \ell \, dx, \quad \forall \ell \in L^2.$$

Multiscale discretization:

Seek solutions in low-dimensional subspaces in which local fine-scale properties are incorporated into the basis functions

The MsMFE Method in a Nutshell Linear system and basis functions

Discretisation matrices:

$$\begin{pmatrix} B & C \\ C^T & \mathbf{0} \end{pmatrix} \begin{pmatrix} v \\ p \end{pmatrix} = \begin{pmatrix} f \\ g \end{pmatrix},$$

$$b_{ij} = \int_{\Omega} \psi_i (\lambda K)^{-1} \psi_j \, dx,$$

$$c_{ik} = \int_{\Omega} \phi_k \nabla \cdot \psi_i \, dx$$

Multiscale basis function:

We construct a *coarse* grid, and choose the discretisation spaces V and U^{ms} such that:

We construct a *coarse* grid, and choose the discretisation spaces V and U^{ms} such that:

• For each coarse block T_i , there is a basis function $\phi_i \in V$.

We construct a *coarse* grid, and choose the discretisation spaces V and U^{ms} such that:

- For each coarse block T_i , there is a basis function $\phi_i \in V$.
- For each coarse edge Γ_{ij} , there is a basis function $\psi_{ij} \in U^{ms}$.

For each coarse edge Γ_{ij} , define a basis function with unit flux through Γ_{ij} and no flow across $\partial(T_i \cup T_j)$.

Local flow problem:

$$\psi_{ij} = -\lambda K \nabla \phi_{ij}, \qquad \nabla \cdot \psi_{ij} = \begin{cases} w_i(x), & \text{ for } x \in T_i, \\ -w_j(x), & \text{ for } x \in T_j, \end{cases}$$

with boundary conditions $\psi_{ij} \cdot n = 0$ on $\partial(T_i \cup T_j)$.

Global velocity:

$$v = \sum_{ij} v_{ij} \psi_{ij}$$
, where v_{ij} are (coarse-scale) coefficients.

The MsMFE method allows fully automated coarse gridding strategies: grid blocks need to be connected, but can have arbitrary shapes

Corner-point grids: the coarse blocks are logically Cartesian in index space

The MsMFE Method in a Nutshell Workflow with automated upgridding in 3D

1) Coarsen grid by uniform partitioning in index space for corner-point grids

3) Compute basis functions

SINTEF

$$\nabla \cdot \psi_{ij} = \begin{cases} w_i(x), \\ -w_j(x), \end{cases}$$
 for all pairs of blocks

4) Block in coarse grid: component for building global solution

Applied Mathematics

Multigrid more efficient when computing pressure once. Why bother with multiscale pressure solvers?

- Full simulation: $\mathcal{O}(10^2)$ time steps.
- Basis functions need not be recomputed

Also:

- Possible to solve very large problems
- Easy parallelization

The MsMFE Method in a Nutshell Example: 10th SPE Comparative Solution Project

- Choice of weighting function in definition of basis functions
- Boundary conditions (overlap and global information)
- Assembly of linear system
- Fine-grid discretization
- Generation of coarse grids

Interpretation of the weight function:

$$egin{aligned} (
abla \cdot v)|_{T_i} &= \sum_j w_i
abla \cdot (v_{ij} \psi_{ij}) = w_i \sum_j v_{ij} \ &= w_i \int_{\partial T_i} v \cdot n ds = w_i \int_{T_i}
abla \cdot v \end{aligned}$$

That is, w_i distributes $\nabla \cdot v$ among the cells in the coarse grid

Different roles:

Incompressible flow: Compressible flow:

$$\begin{aligned} \nabla \cdot v &= q \\ \nabla \cdot v &= q - c_t \partial_t p - \sum_j c_j v_j \cdot \nabla p \end{aligned}$$

Implementation Details for MsMFE Weight function: incompressible flow

For incompressible flow, we have that

$$(\nabla \cdot v)|_{T_i} = w_i \sum_j v_{ij}, \qquad \sum_j v_{ij} = \begin{cases} 0, & \text{if } \int_{T_i} q dx = 0, \\ \int_{T_i} q dx, & \text{otherwise} \end{cases}$$

Thus

$$\int_{T_i} q dx = \mathbf{0} \qquad \Rightarrow \qquad \nabla \cdot v = \mathbf{0}, \quad \forall w_i > \mathbf{0}$$

$$\int_{T_i} q dx \neq \mathbf{0} \qquad \Rightarrow \qquad \nabla \cdot v = q, \quad \text{if } w_i = \frac{q}{\int_{T_i} q dx}$$

Implementation Details for MsMFE Choice of weight function: uniform

Uniform source:

$$w_i(x) = \frac{1}{|T_i|}$$

low (k_l) and high (k_h) permeability

streamlines from basis function

Implementation Details for MsMFE

Choice of weight function: scaled

Scaled source:

$$w_i(x) = \frac{\operatorname{trace}(K(x))}{\int_{T_i} \operatorname{trace}(K(\xi)) d\xi}$$

Relative error in energy-norm

Implementation Details for MsMFE

Choice of weight function: compressible flow

Compressible flow:

$$\begin{aligned} (\nabla \cdot v)|_{T_i} &= w_i \sum_j v_{ij}, \\ \sum_j v_{ij} &= \int_{T_i} \left(q - c_t \frac{\partial p}{\partial t} + \sum_j c_\alpha v_\alpha \cdot \nabla p \right) dx \end{aligned}$$

Ideas from incompressible flow do not apply directly:

- $w_i \propto q$ concentrates compressibility effects where $q \neq 0$
- $w_i \propto K$ overestimates $\nabla \cdot v$ in high-permeable zones and underestimates in low-permeable zones

Better choice:

$$\frac{\phi}{\int_{T_{\cdot}} \phi dx}$$
 Motivation: $c_t \partial_t p \propto \phi$

 $w_i =$

Domain of Support Basis Functions Here with overlap (green region)

Domain of Support Basis Functions Here with overlap (green region)

Standard: Use initial partitioning as is

Adapted: Initial partition altered to put wells near block center

Refined: Altered partition further sub-divided near wells

Well oversampling: Support domain for well/block enlarged to include additional cells about well trajectory

Well & block oversampling: Well oversampling + inclusion of additional cells about coarse blocks

Corner-point grids:

- areal 2D mesh of vertical or inclined pillars
- each volumetric cell is restriced by four pillars
- each cell is defined by eight corner points, two on each pillar

Implementation Details for MsMFE Cell geometries are challenging from a discretization point-of-view

Very high aspect ratios (and centroid outside the cell):

05/12/2008 < □ > 23/63

Mimetic finite-difference methods may be interpreted as a finite-volume counterpart of mixed finite-element methods.

Key features:

- Applicable for models with general polyhedral grid-cells.
- Allow easy treatment of non-conforming grids with complex grid-cell geometries (including curved faces).
- Generic implementation: same code applies to all grids (e.g., corner-point/PEBI, matching/non-matching, ...).

Express fluxes
$$\boldsymbol{v} = (v_1, v_2, \dots, v_n)^{\mathsf{T}}$$
 as:

$$\boldsymbol{v}=-\boldsymbol{T}(\boldsymbol{p}-p_0),$$

where $p = (p_1, p_2, ..., p_n)^{\mathsf{T}}$.

Express fluxes
$$\boldsymbol{v} = (v_1, v_2, \dots, v_n)^{\mathsf{T}}$$
 as:

$$\boldsymbol{v}=-\boldsymbol{T}(\boldsymbol{p}-p_0),$$

where $p = (p_1, p_2, ..., p_n)^T$. Impose exactness for any *linear* pressure field $p = x^T a + c$ (which gives velocity equal to $-\mathbf{K}a$):

$$v_i = -A_i \boldsymbol{n}_i^{\mathsf{T}} \mathbf{K} \boldsymbol{a}$$

 $p_i - p_0 = (\boldsymbol{x}_i - \boldsymbol{x}_0)^{\mathsf{T}} \boldsymbol{a}.$

Express fluxes
$$\boldsymbol{v} = (v_1, v_2, \dots, v_n)^{\mathsf{T}}$$
 as:

$$\boldsymbol{v}=-\boldsymbol{T}(\boldsymbol{p}-p_0),$$

where $p = (p_1, p_2, ..., p_n)^{\mathsf{T}}$. Impose exactness for any *linear* pressure field $p = x^{\mathsf{T}}a + c$ (which gives velocity equal to $-\mathsf{K}a$):

$$v_i = -A_i \boldsymbol{n}_i^{\mathsf{T}} \mathbf{K} \boldsymbol{a}$$

 $p_i - p_0 = (\boldsymbol{x}_i - \boldsymbol{x}_0)^{\mathsf{T}} \boldsymbol{a}.$

As a result, \mathbf{T} must satisfy

$$\mathbf{T} \times \mathbf{C} = \mathbf{N} \times \mathbf{K}$$

where
$$m{C}(i,:) = (m{x}_i - m{x}_0)^{\mathsf{T}}$$
 and $m{N}(i,:) = A_i m{n}_i^{\mathsf{T}}$

05/12/2008 < □ > 25/63

SINTEF

Express fluxes
$$\boldsymbol{v} = (v_1, v_2, \dots, v_n)^{\mathsf{T}}$$
 as:

$$\boldsymbol{v}=-\boldsymbol{T}(\boldsymbol{p}-p_0),$$

where $\boldsymbol{p} = (p_1, p_2, \dots, p_n)^{\mathsf{T}}$. Impose exactness for any *linear* pressure field $p = \boldsymbol{x}^{\mathsf{T}} \boldsymbol{a} + c$ (which gives velocity equal to $-\mathbf{K}\boldsymbol{a}$): $v_i = -A_i \boldsymbol{n}_i^{\mathsf{T}} \mathbf{K} \boldsymbol{a}$

$$p_i - p_0 = (\boldsymbol{x}_i - \boldsymbol{x}_0)^\mathsf{T} \boldsymbol{a}.$$

As a result, \mathbf{T} must satisfy

$$\mathbf{T} \times \mathbf{C} = \mathbf{N} \times \mathbf{K}$$

where
$$m{C}(i,:) = (m{x}_i - m{x}_0)^{\mathsf{T}}$$
 and $m{N}(i,:) = A_i m{n}_i^{\mathsf{T}}$

Family of valid solutions: $\boldsymbol{T} = \frac{1}{|E|} \boldsymbol{N} \boldsymbol{K} \boldsymbol{N}^{\mathsf{T}} + \boldsymbol{T}_2,$

where T_2 is such that T is s.p.d. and $T_2C = O$.

05/12/2008 < □ > 25/63

SINTEF

Express fluxes
$$\boldsymbol{v} = (v_1, v_2, \dots, v_n)^{\mathsf{T}}$$
 as:

$$\boldsymbol{v}=-\boldsymbol{T}(\boldsymbol{p}-p_0),$$

where $\boldsymbol{p} = (p_1, p_2, \dots, p_n)^{\mathsf{T}}$. Impose exactness for any *linear* pressure field $p = \boldsymbol{x}^{\mathsf{T}}\boldsymbol{a} + c$ (which gives velocity equal to $-\mathbf{K}\boldsymbol{a}$):

$$v_i = -A_i \boldsymbol{n}_i^{\mathsf{T}} \mathbf{K} \boldsymbol{a}$$

 $p_i - p_0 = (\boldsymbol{x}_i - \boldsymbol{x}_0)^{\mathsf{T}} \boldsymbol{a}.$

As a result, ${\bf T}$ must satisfy

$$\mathbf{T} \times \mathbf{C} = \mathbf{N} \times \mathbf{K}$$

where
$$m{C}(i,:) = (m{x}_i - m{x}_0)^{\mathsf{T}}$$
 and $m{N}(i,:) = A_i m{n}_i^{\mathsf{T}}$

SINTEF

Family of valid solutions: $\boldsymbol{T} = \frac{1}{|E|} \boldsymbol{N} \boldsymbol{\mathsf{K}} \boldsymbol{N}^\mathsf{T} + \boldsymbol{T}_2,$

where T_2 is such that T is s.p.d. and $T_2C = O$.

Imposing continuity across edges/faces and conservation yields a *hybrid* system:

$$\begin{pmatrix} B & C & D \\ C^{\mathsf{T}} & O & O \\ D^{\mathsf{T}} & O & O \end{pmatrix} \begin{pmatrix} v \\ p \\ \pi \end{pmatrix} = \mathsf{RHS}$$

₩

Reduces to s.p.d. system for face pressures π .

Applied Mathematics

Discrete Pressure System

$$\begin{pmatrix} B & \mathbf{0} & C & D & \mathbf{0} \\ \mathbf{0} & B_w & C_w & \mathbf{0} & D_w \\ C^{\mathsf{T}} & C_w^{\mathsf{T}} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ D^{\mathsf{T}} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & D_w^{\mathsf{T}} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{pmatrix} \begin{pmatrix} v \\ -q_w \\ -p \\ \pi \\ p_w \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ -q_{w, \mathsf{tot}} \end{pmatrix} -$$

Well Model, Peaceman

$$-q_i^k = -\lambda_t(s_{k_i}) \operatorname{WI}_i^k(p_{E_{k_i}} - p_{w_k}), \quad i = 1, \dots, n_k$$
$$q_{\mathsf{tot}}^k = \sum_{i=1}^{n_k} q_i^k.$$

05/12/2008 < □ > 26/63

Implementation Details for MsMFE Mimetic: method applicable to general polyhedral cells

Standard method + skew grids = grid-orientation effects

 \mathbf{K} : homogeneous and isotropic, symmetric well pattern \longrightarrow symmetric flow

Streamlines with two-point method

Streamlines with mimetic method

05/12/2008 < □ > 27/63

There is freedom in choosing the inner product (\mathbf{T}_2) , so that e.g.,

- MFDM coincides with TPFA on Cartesian grids
- MFDM coincides with MFEM on Cartesian grids

Positive definite system is guaranteed. Monotonicity properties are similar as for MPFA.

Challenge:

Local adjustment of the inner product to reduce the condition number (and appearance of cycles) on complex grids.

(Unique) grid flexibility:

Given a method that can solve local flow problems on the subgrid, the MsMFE method can be formulated on any coarse grid in which the coarse blocks consist of a connected collection of fine-grid cells

(Unique) grid flexibility:

Given a method that can solve local flow problems on the subgrid, the MsMFE method can be formulated on any coarse grid in which the coarse blocks consist of a connected collection of fine-grid cells

05/12/2008 < □ > 29/63

Implementation Details for MsMFE Coarse grid generation

Problems occur when a basis function tries to force flow through a flow barrier

Can be detected automatically through the indicator

$$v_{ij} = \psi_{ij} \cdot (\lambda K)^{-1} \psi_{ij}$$

If $v_{ij}(x) > C$ for some $x \in T_i$, then split T_i and generate basis functions for the new faces

SINTEF

05/12/2008 < □ > 30/63

Problems if there is a strong bi-directional flow over a coarse-grid interface

fine grid

multiscale

Can be detected automatically through the indicator

$$|\int_{\Gamma_{ij}} v \cdot n \, ds| \ll \int_{\Gamma_{ij}} |v \cdot n| \, ds, \qquad c \leq \int_{\Gamma_{ij}} |v \cdot n| \, ds$$

If so, split T_i and generate basis functions for the new faces.

05/12/2008 < 🗆 🕨 31/63

Problems if there is a strong bi-directional flow over a coarse-grid interface

fine grid

multiscale

Can be detected automatically through the indicator

$$|\int_{\Gamma_{ij}} v \cdot n \, ds| \ll \int_{\Gamma_{ij}} |v \cdot n| \, ds, \qquad c \leq \int_{\Gamma_{ij}} |v \cdot n| \, ds$$

If so, split T_i and generate basis functions for the new faces.

05/12/2008 < 🗆 🕨 31/63

Implementation Details for MsMFE Simple guidelines for choosing good coarse grids

- Minimize bidirectional flow over interfaces:
 - Avoid unnecessary irregularity ($\Gamma_{6,7}$ and $\Gamma_{3,8})$
 - Avoid single neighbors (T_4)
 - Ensure that there are faces transverse to flow direction (T₅)
- Blocks and faces should follow geological layers (T₃ and T₈)
- Blocks should adapt to flow obstacles whenever possible
- For efficiency: minimize the number of connections
- S Avoid having too many small blocks

Implementation Details for MsMFE

Example: adaption to flow obstacles

05/12/2008 < □ > 33/63

Four new developments in the last year:

- Extension of the MsMFE method to compressible three-phase flow
- A prototype implementation in FrontSim, applied to fractured media
- Extension of the MsMFE method to the Stokes-Brinkman equations to model flow in vuggy and naturally-fractured porous media
- Combination of the MsMFE method and the flow-based nonuniform coarsening method to give a very efficient solver

MsMFE for Compressible Black-Oil Models Fine-grid formulation

Semi-discrete pressure equation

$$c_t \frac{p_{\nu}^n - p^{n-1}}{\Delta t} + \nabla \cdot \vec{u}_{\nu}^n - \zeta_{\nu-1}^n \vec{u}_{\nu-1}^n \cdot \mathbf{K}^{-1} \vec{u}_{\nu}^n = q, \quad \vec{u}_{\nu}^n = -\mathbf{K}\lambda \nabla p_{\nu}^n$$

Discretization using a mimetic method

$$oldsymbol{u}_E = \lambda oldsymbol{T}_E (p_E - oldsymbol{\pi}_E), \quad oldsymbol{T}_E = |E|^{-1} oldsymbol{N}_E oldsymbol{\mathsf{K}}_E oldsymbol{N}_E^\mathsf{T} + oldsymbol{ ilde{T}}_E$$

 N_E : face normals, X_E : vector from face to cell centroids, \tilde{T}_E chosen arbitrarily provided $\tilde{T}_E X_E = 0$.

Hybrid system:

$$egin{bmatrix} oldsymbol{B} & oldsymbol{C} & oldsymbol{D} \ oldsymbol{C}^{\mathsf{T}} - oldsymbol{V}_{
u-1}^{\mathsf{T}} & oldsymbol{P} & oldsymbol{0} \ oldsymbol{D}^{\mathsf{T}} & oldsymbol{0} & oldsymbol{0} \ oldsymbol{T} \ oldsymbol{T} \ oldsymbol{T} \ oldsymbol{D} \ oldsymbol{D} \ oldsymbol{T} \ oldsymbol{D} \ oldsymbol{D} \ oldsymbol{D} \ oldsymbol{L} \ oldsymbol{D} \ oldsymbol{T} \ oldsymbol{D} \$$

05/12/2008 < □ > 35/63

MsMFE for Compressible Black-Oil Models Coarse-grid formulation

$$\begin{bmatrix} \mathbf{\Psi}^{\mathsf{T}} \boldsymbol{B}_{f} \mathbf{\Psi} & \mathbf{\Psi}^{\mathsf{T}} \boldsymbol{C}_{f} \boldsymbol{\mathcal{I}} & \mathbf{\Psi}^{\mathsf{T}} \boldsymbol{D}_{f} \boldsymbol{\mathcal{J}} \\ \boldsymbol{\mathcal{I}}^{\mathsf{T}} (\boldsymbol{C}_{f} - \boldsymbol{V}_{f})^{\mathsf{T}} \mathbf{\Psi} & \boldsymbol{\mathcal{I}}^{\mathsf{T}} \boldsymbol{P}_{f} \boldsymbol{\mathcal{I}} & \boldsymbol{0} \\ \boldsymbol{\mathcal{J}}^{\mathsf{T}} \boldsymbol{D}_{f}^{\mathsf{T}} \mathbf{\Psi} & \boldsymbol{0} & \boldsymbol{0} \end{bmatrix} \begin{bmatrix} \boldsymbol{u} \\ -\boldsymbol{p} \\ \boldsymbol{\pi} \end{bmatrix} = \begin{bmatrix} \boldsymbol{0} \\ \boldsymbol{\mathcal{I}}^{\mathsf{T}} \boldsymbol{P}_{f} \boldsymbol{p}_{f}^{n} \\ \boldsymbol{0} \end{bmatrix}$$

- Ψ velocity basis functions
- Φ pressure basis functions
- \mathcal{I} prolongation from blocks to cells
- $\mathcal J$ prolongation from block faces to cell faces

New feature: fine-scale pressure

$$oldsymbol{p}^f pprox \mathcal{I}oldsymbol{p} + oldsymbol{\Phi}oldsymbol{D}_\lambdaoldsymbol{u}, \qquad oldsymbol{D}_\lambda = \mathsf{diag}(\lambda_i^0/\lambda_i)$$

MsMFE for Compressible Black-Oil Models Example 1: tracer transport in gas (Lunati&Jenny 2006)

05/12/2008 < 🗆 > 37/63

MsMFE for Compressible Black-Oil Models Example 2: block with a single fault

05/12/2008 < 🗆 > 38/63

MsMFE for Compressible Black-Oil Models Example 3: a model with five faults

() SINTEF

Applied Mathematics

05/12/2008 < □ > 39/63

MsMFE Prototype Solver in FrontSim Example: a dense system of fracture corridors

() SINTEF

Applied Mathematics

05/12/2008 < □ > 40/63

MsMFE Prototype Solver in FrontSim Example: SPE 10 with fracture corridors

x-y permeability saturation, reference saturation, multiscale

05/12/2008 ∢ □ ≻ 41/63

MsMFE Prototype Solver in FrontSim Example: SPE 10 with fracture corridors

05/12/2008 < 🗆 > 42/63

MsMFE for the Stokes–Brinkman Equations Model equations: Darcy–Stokes vs Stokes–Brinkman

Standard approach:

Porous region (Darcy):

$$\mu \mathbf{K}^{-1} \vec{u}_D + \nabla p_D = \vec{f}, \quad \nabla \cdot \vec{u}_D = q.$$

Free-flow region (Stokes):

$$-\mu\nabla\cdot\left(\nabla\vec{u}_S + \nabla\vec{u}_S^{\mathsf{T}}\right) + \nabla p_S = \vec{f}, \quad \nabla\cdot\vec{u}_S = q$$

Problem: requires interface conditions and explicit geometry

Stokes-Brinkman (following Popov et al.)

$$\mu \mathbf{K}^{-1} \vec{u} + \nabla p - \tilde{\mu} \Delta \vec{u} = \vec{f}, \qquad \nabla \cdot \vec{u} = q$$

Here: seamless transition from Darcy to Stokes (with $\mu = \tilde{\mu}$)

() SINTEF

05/12/2008 < 🗆 🕨 43/63

$\underset{\text{Basis functions}}{\text{MsMFE for the Stokes-Brinkman Equations}}$

Local flow problems discretized using Taylor-Hood elements

$$\mu \mathbf{K}^{-1} \vec{\psi}_{ij} + \nabla \varphi_{ij} - \tilde{\mu} \Delta \vec{\psi}_{ij} = 0, \qquad \nabla \cdot \vec{\psi}_{ij} = \begin{cases} w_i(\vec{x}), & \text{if } \vec{x} \in \Omega_i, \\ -w_j(\vec{x}), & \text{if } \vec{x} \in \Omega_j, \\ 0, & \text{otherwise}, \end{cases}$$

MsMFE for the Stokes–Brinkman Equations

Coarse-scale hybrid mixed system

$$\begin{bmatrix} \left(A^{-1}\right)^\mathsf{T} \boldsymbol{\Psi}^\mathsf{T} B_D^f \boldsymbol{\Psi} A^{-1} & C & D \\ C^\mathsf{T} & \boldsymbol{0} & \boldsymbol{0} \\ D^\mathsf{T} & \boldsymbol{0} & \boldsymbol{0} \end{bmatrix} \begin{bmatrix} \boldsymbol{u}^c \\ -\boldsymbol{p}^c \\ \boldsymbol{\lambda}^c \end{bmatrix} = \begin{bmatrix} \boldsymbol{0} \\ \boldsymbol{q}^c \\ \boldsymbol{0} \end{bmatrix}$$

$$oldsymbol{A}$$
 – matrix with face areas
 $oldsymbol{\Psi}$ – matrix with basis functions
 $oldsymbol{B}_D^f$ – fine-scale *Darcy* TH-discretization

Fine-scale flux reconstructed as $oldsymbol{u}^f = oldsymbol{\Psi}oldsymbol{u}^c$

05/12/2008 < 🗆 > 45/63

MsMFE for the Stokes–Brinkman Equations Example 1: Model 2 of the 10th SPE Comparative Solution Project

Producer A

Tarbert (1–35)

05/12/2008 < □ > 46/63

MsMFE for the Stokes–Brinkman Equations Example 1: Layer 20 of SPE10

() SINTEF

Applied Mathematics

05/12/2008 < □ > 47/63

MsMFE for the Stokes–Brinkman Equations Example 1: Layer 60 of SPE10 (worst case with injector in low-permeable block)

Applied Mathematics

05/12/2008 < □ > 48/63

MsMFE for the Stokes–Brinkman Equations

Example 2: Vuggy reservoir (short correlation)

Fine-scale model consists of 200×200 cells 26 random vugs of sizes 1.8–10.4 m² Permeability in vugs is 10^7 higher than in matrix

05/12/2008 < 🗆 > 49/63

MsMFE for the Stokes–Brinkman Equations

Example 3: Fractured reservoir (long correlation)

Fine-scale model consists of 200×200 cells 14 random fractures of varying length Permeability in fractures is 10^7 higher than in matrix

05/12/2008 < □ > 50/63

MsMFE for the Stokes–Brinkman Equations Example 4: Vuggy and fractured reservoir (short and long correlation)

FS

Permeability

Applied Mathematics

05/12/2008 < □ > 51/63

MsMFE for the Stokes–Brinkman Equations Example 4: Vuggy and fractured reservoir (short and long correlation)

FS

MS

Permeability

Basis functions in x-direction

Basis functions in y-direction

Permeability and velocity vectors

05/12/2008 < □ > 51/63
Task:

Given the ability to model velocity on geomodels and transport on coarse grids: Find a suitable coarse grid that best resolves fluid transport and minimizes loss of accuracy.

Idea (Aarnes & Efendiev):

Use flow velocities to make a nonuniform grid in which each cell has approximately the same total flow

Flow-Based Nonuniform Coarsening Algorithm

- ② Combine small blocks
- Split blocks with too large flow
- Ombine small blocks

SPE 10, Layer 37

Logarithm of permeability: Layer 37 in SPE10

Logarithm of velocity on non-uniform coarse grid: 208 cells

Step 1: Segment $\ln |v|$ into N level sets

Robust choice: N = 10

Step 1: 1411 cells

05/12/2008 < 🗆 > 54/63

Step 1: Segment $\ln |v|$ into N level sets

Robust choice: N = 10

Step 1: 1411 cells

Step 2: Combine small blocks (|B| < c) with a neighbour

$$\begin{array}{l} \text{Merge } B \text{ and } B' \text{ if} \\ \frac{1}{|B|} \int_B \ln |v| \approx \\ \frac{1}{|B'|} \int_{B'} \ln |v| \end{array}$$

Step 2: 94 cells

() SINTEF

Step 3: Refine blocks with too much flow $(\int_B \ln |v| dx > C)$

Build B' inwards from ∂B Restart with $B = B \setminus B'$

Step 3: 249 cells

Step 3: Refine blocks with too much flow $(\int_B \ln |v| dx > C)$

Build B' inwards from ∂B Restart with $B = B \setminus B'$

Step 3: 249 cells

Step 4: Combine small blocks with a neighbouring block

Step 2 repeated

Step 4: 160 cells

() SINTEF

Applied Mathematics

05/12/2008 < □ > 55/63

Flow-Based Nonuniform Coarsening Example 1: Layer 68, SPE10, 5-spot well pattern

 $\begin{array}{l} \text{Geomodel:} \\ \text{60} \times 220 = 13\,200 \end{array}$

Uniform: $15 \times 44 = 660$

Non-uniform: 619–734 blocks

Observations:

- First 35 layers: 22 \Rightarrow uniform grid adequate.
- Last 50 layers: ²⁰⁰→ uniform grid inadequate.
- Non-uniform grid gives consistent results for all layers.

05/12/2008 < □ > 56/63

Flow-Based Nonuniform Coarsening Example 1: Layer 68, SPE10, 5-spot well pattern

Logarithm of permeability: Layer 68

Geomodel: 13200 cells

Logarithm of velocity on Cartesian coarse grid

Coarse grid: 660 cells

Logarithm of velocity on geomodel

Logarithm of velocity on non-uniform coarse grid

Coarse grid: 649 cells

Coarse grid: 264 cells

() SINTEF

Logarithm of velocity on non-uniform coarse grid

05/12/2008 < □ > 57/63

Flow-Based Nonuniform Coarsening

Example 2: real-field model

() SINTEF

Applied Mathematics

05/12/2008 < □ > 58/63

Flow-Based Nonuniform Coarsening Example 2: real-field model

05/12/2008 < □ > 59/63

Both methods fast by themselves, but not optimal if they communicate via fine grid.

- Saturation piecewise constant on coarse saturation grid.
- Saturation-solver only requires fine-grid fluxes over coarse-grid interfaces.
- \rightarrow Compute coarse mappings as a preprocessing step

MsMFEM and Nonuniform Coarsening

Multiscale pressure system:

$$egin{bmatrix} \mathbf{\Psi}^\mathsf{T} m{B}_f(\mathcal{I} m{s}_{n-1}) \mathbf{\Psi} & m{C} & m{D} \ m{C}^\mathsf{T} & m{0} & m{0} \ m{D}^\mathsf{T} & m{0} & m{0} \end{bmatrix} \begin{bmatrix} m{u}^n \ -m{p}^n \ m{\lambda}^n \end{bmatrix} = egin{bmatrix} -m{D}_D \pi_D^n \ m{0} \ m{v}_N^n \end{bmatrix}$$

Coarse-scale transport:

$$oldsymbol{s}^n = oldsymbol{s}^{n-1} + \Delta t oldsymbol{\mathcal{I}}^{\mathsf{T}} oldsymbol{\Lambda}_{\phi,f} oldsymbol{\mathcal{I}} oldsymbol{\left(}oldsymbol{v}^n oldsymbol{)} oldsymbol{\mathcal{I}} oldsymbol{f}(oldsymbol{s}^n) + oldsymbol{\mathcal{I}}^{\mathsf{T}} oldsymbol{q}_+ oldsymbol{
ight)}$$

Reducing computational complexity

• rewrite time-dependent block of matrix

$$\mathbf{\Psi}^{\mathsf{T}} \boldsymbol{B}_{f}(\boldsymbol{\mathcal{I}} \boldsymbol{s}_{n-1}) \mathbf{\Psi} = \sum_{k=1}^{N_{p}} \mathbf{\Psi}^{\mathsf{T}} \boldsymbol{B}_{f}(\boldsymbol{\mathcal{I}} \boldsymbol{e}_{k} s_{k}^{n-1}) \mathbf{\Psi},$$

where $\lambda(s_k^{n-1}) \Psi^{\mathsf{T}} B_f(\mathcal{I} e_k s_k^{n-1}) \Psi$ is time-independent

ullet need only store $\mathcal{I}^{\mathsf{T}} V(v_{f}^{n}) \mathcal{I}$ on coarse-grid interfaces

MsMFEM and Nonuniform Coarsening Example: Water-flooding optimization (45 000 cells, real-field model)

Simulation time (20 time-steps) using simple MATLAB implementation on standard work-station:

- 80 sec if updating fine system for every step
- \bullet < 5 sec if using precomputed coarse mappings

The GeoScale Project Portfolio Research funded mainly by the Research Council of Norway

Geological representation

05/12/2008 < □ > 63/63