Adaptive Multiscale Streamline Simulation and Inversion for High-Resolution Geomodels

K.–A. Lie † V. R. Stenerud ‡ A. F. Rasmussen †

† SINTEF ICT, Dept. Applied Mathematics ‡ StatoilHydro

ECMOR XI, Bergen, September 8-11, 2008

Applied Mathematics

Sept 2008 < □ > 1/19

Introduction: History matching

History matching is the procedure of modifying the reservoir description to match measured reservoir responses.

Reference[.]

Applied Mathematics

Sept 2008 ∢ □ > 2/19

Introduction: History-matching loop

Sept 2008 < □ > 3/19

Problems:

- highly under-determined problem → non-uniqueness
- errors in model, data, and methods
- nonlinear forward model
- non-convex misfit functions
- forward simulations are computationally demanding

🕥 SINTEF

Sept 2008 < □ > 4/19

Challenge I: Non-convex misfit function

Inversion method: Generalized Travel-Time (GTT) inversion with analytic sensitivities [Vasco et al. (1999), He et al. (2002)]

The generalized travel time is defined as the 'optimal' time-shift that maximizes

$$R^{2}(\Delta t) = 1 - \frac{\sum [y^{\text{obs}}(t_{i} + \Delta t) - y^{\text{cal}}(t_{i})]^{2}}{\sum [y^{\text{obs}}(t_{i}) - \bar{y}^{\text{obs}}(t_{i})]^{2}}.$$

Travel-time inversion

Basic underlying principles for the history-matching algorithm

- Minimize travel-time misfit for water-cut by iterative least-square minimization algorithm.
- Preserve geologic realism by keeping changes to prior geologic model minimal (if possible).
- Only allow smooth large-scale changes. Production data have low resolution and cannot be used to infer small-scale variations.

Minimization of functional:

- $\Delta \mathbf{\tilde{t}}$: Travel–time shift
- ${\bf S}$: Sensitivity matrix
- \mathbf{m} : Reservoir

parameters

 ${\bf S}$ computed analytically along streamlines from a single flow simulation

Sept 2008 < □ > 6/19

Streamline-based history matching

Features of streamlines

- Very well suited for modeling large heterogeneous multiwell systems dominated by convection
- Generally fast flow simulation
- Delineate flow pattern (injector-producer pairs)
- Enables analytic sensitivities

Classes of streamline-based history-matching methods

- Assisted history matching
- (Generalized) travel-time inversion methods
- Streamline-effective property methods
- Miscellaneous

Sept 2008 < □ > 7/19

Example: Uncertainty quantification

Simple two-phase model (end-point mobility M = 0.5) on a 2D horizontal reservoir, 25×25 cells with lognormal permeability. Result after eight iterations:

Statistical analysis of mean and standard deviation

Sept 2008 < □ > 8/19

Challenge II: Long runtime for forward simulations

Streamline simulation much faster than conventional FD-methods.

Still, room for improvement.

Observations:

- pressure solver most expensive part of flow simulation
- parameters change very little from one flow simulation to the next

Sept 2008 < □ > 9/19

Challenge II: Long runtime for forward simulations

Streamline simulation much faster than conventional FD-methods.

Still, room for improvement.

Observations:

- pressure solver most expensive part of flow simulation
- parameters change very little from one flow simulation to the next

Idea: should reuse computations in areas with minor changes \longrightarrow multiscale methods

Multiscale pressure solver

Upscaling and downscaling in one step. Runtime like coarse-scale solver, resolution like fine-scale solver.

Fine grid: 75×30 . Coarse grid: 15×6

Coarse grid: pressure and fluxes. Fine grid: fluxes

SINTEF

Sept 2008 < □ > 10/19

Further computational savings

Can also reuse basis functions from previous forward simulation. General idea: use sensitivities to steer updating

History matching on geological models Generalized travel-time inversion on million-cell model

1 million cells, 32 injectors, and 69 producers 2475 days \approx 7 years of water-cut data

Analytical sensitivities along streamlines + travel-time inversion (quasi-linearization of misfit functional)

	Misfit			CPU-time (wall clock)			
Solver	Т	A	$\Delta \ln k$	Total	Pres.	Transp.	
Initial	100.0	100.0	0.821	_	—	_	
TPFA	8.9	53.5	0.806	64 min	33 min	28 min	
Multiscale	11.2	47.3	0.812	43 min	7 min	32 min	
Multiscale	10.4	45.4	0.828	17 min	7 min	6 min	

Time-shift misfit: $\|\Delta t\|_2$

Amplitude misfit: $[\sum_k \sum_j (d_w^{obs} - d_w^{cal})^2]^{1/2}$

Permeability discrepancy: $\sum_{i=1}^{N} |\ln k_i^{\text{ref}} - \ln k_i^{\text{match}}|/N$

Generalized Laplacian stencil

$$L_{i} \mathbf{m} = -w_{ii}m_{i} + \sum_{j \in \mathcal{N}(i)} w_{ji}m_{j},$$

$$w_{ji} = w_{\text{norm}} \cdot \rho(\zeta(i, j); R), \qquad w_{ii} = \sum_{j \in \mathcal{N}(i)} w_{ji}.$$

Properties of smoothing: independent of grid density, reduce to Laplacian on Cartesian grids, decay with distance $\zeta(i, j)$, be zero outside finite range, be bounded as $\zeta \to 0$.

SINTEF

Sensitivities are spatially additive.

 $Small/large cells \longrightarrow small/large sensitivities$

Thus, grid effects are to be expected

Rescaling of sensitivities:

Permeability modification ΔK_i scales with sensitivity G_i . Splitting cell in two $\Longrightarrow \Delta K \to \sim \frac{1}{2}\Delta K$ in each subcell Therefore: scale sensitivity by relative volume, $\tilde{G}_i = G_i(\bar{V}/V_i)$

Example: 1200 days observed (5% noise added), 800 matched, 400 predicted

() SINTEF

Applied Mathematics

Sept 2008 < □ > 15/19

Synthetic test case:

 $21\times21\times7$ tensor-product grid with layers of varying thickness.

Layer	1	2	3	4	5	6	7
Thickness	1.0	0.089	0.164	0.212	0.251	0.285	1.0

Initial model: two different constant values True model: homogeneous

Sept 2008 < □ > 16/19

Infill drilling case:

Production data from 3000 days, 2500 used in history match. At 900 days:

- new producer P5 drilled
- producer P4 converted to injector

Applied Mathematics

Sept 2008 < □ > 18/19

Direct continuation of previous work:

- Unstructured grids (done for inversion algorithm)
- Corner-point grids (testing remains to be done on real models)
- Other types of data / more general flow

Other possible directions using streamlines:

- Closed-loop reservoir management
- History-matching seismic data
- Use of sensitivities for other optimization workflows

• . . .

Sept 2008 < □ > 19/19