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Introduction: History matching

History matching is the procedure of modifying the reservoir
description to match measured reservoir responses.

Initial: Matched: Reference:
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Introduction: History-matching loop

Evaluate misfit

No

Current reservoir parameters

Flow simulation

(observed - calculated)

Is misfit small enough

HM method/Inversion

Yes

E =
∑

(dobs−dcal)2, dcal = g(m)
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Challenges in history-matching loop

Evaluate misfit

No

Current reservoir parameters

Flow simulation

(observed - calculated)

Is misfit small enough

HM method/Inversion

Yes

Problems:

highly under-determined
problem → non-uniqueness

errors in model, data, and
methods

nonlinear forward model

non-convex misfit functions

forward simulations are
computationally demanding
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Challenge I: Non-convex misfit function

Inversion method: Generalized Travel-Time Inversion (GTTI)
with analytic sensitivities [Vasco et al. (1999), He et al. (2002)]

The generalized travel time is defined as the ’optimal’ time–shift
that maximizes

R2(∆t) = 1−
∑

[yobs(ti + ∆t)− ycal(ti)]
2∑

[yobs(ti)− ȳobs(ti)]2
.
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Travel-time inversion

Basic underlying principles for the history–matching algorithm

Minimize travel-time misfit for water–cut by iterative
least-square minimization algorithm.

Preserve geologic realism by keeping changes to prior geologic
model minimal (if possible).

Only allow smooth large-scale changes. Production data have
low resolution and cannot be used to infer small-scale
variations.

Minimization of functional:

∆t̃ : Travel–time shift
S : Sensitivity matrix
m : Reservoir
parameters

‖∆t̃− SδR‖+

Regularization︷ ︸︸ ︷
β1‖δR‖︸ ︷︷ ︸

norm

+β2‖LδR‖︸ ︷︷ ︸
smoothing

S computed analytically along streamlines from a single flow simulation
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Streamline-based history matching

Features of streamlines

Very well suited for modeling
large heterogeneous multi-well
systems dominated by convection

Generally fast flow simulation

Delineate flow pattern
(injector-producer pairs)

Enables analytic sensitivities
Source: www.techplot.com

Streamline-based history-matching methods

Assisted history matching

(Generalized) travel-time inversion methods

Streamline-effective properties methods

Miscellaneous
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Example: Uncertainty quantification

Simple two-phase model (end-point mobility M = 0.5) on a 2D
horizontal reservoir, lognormal permeability
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Statistical analysis of mean and standard deviation
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Challenge II: long runtime for forward simulations

Evaluate misfit

No

Current reservoir parameters

Flow simulation

(observed - calculated)

Is misfit small enough

HM method/Inversion

Yes

Streamline simulation much
faster than conventional
FD-methods.

Still, room for improvement.

Observations:

pressure solver most
expensive part of simulation

data changes very little
from one simulation to the
next

Reuse computations in areas
with minor changes −→
multiscale methods
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Multiscale pressure solver

Upscaling and downscaling in one step. Runtime like coarse-scale
solver, resolution like fine-scale solver.

Fine grid: 75× 30. Coarse grid: 15× 6
Basis functions for each pair
of coarse blocks Ti ∪ Tj :

Ψij = −λK∇Φij

∇ ·Ψij =

{
wi(x), x ∈ Ti

−wj(x), x ∈ Tj

Global linear system
with 249 unknowns:

∇·v = q, v = −λK∇p

Coarse grid: pressure and fluxes. Fine grid: fluxes
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Multiscale methods: efficiency vs accuracy
Ex: q5-spot, SPE 10 (layer 85)1, 60× 220→ 10× 22

Water cuts obtained by never updating basis functions:
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Multiscale methods: efficiency vs accuracy
Ex: q5-spot, SPE 10 (layer 85)1, 60× 220→ 10× 22

Improved accuracy by adaptive updating of basis functions:
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Further computational savings

Can also reuse basis functions from previous forward simulation.
General idea: use sensitivity to steer updating
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History matching on heological models
Generalized travel-time inversion on million-cell model

Assimilation of production data to calibrate model

1 million cells, 32 injectors, and 69 producers

2475 days ≈ 7 years of water-cut data

Analytical sensitivities along streamlines + travel-time inversion (quasi-linearization of
misfit functional)

Time-residual Amplitude-residual

Computation time: ∼ 17 min on a desktop PC (6 iterations).
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History matching on geological models
Residuals and timing results, Intel Core 2 Duo (2.4 GHz, 4Mb cache)

Misfit CPU-time (wall clock)
Solver O/M T A ∆ ln k Total Pres. Transp.
Initial — 100.0 100.0 0.821 — — —
Std. (7 pt.) O 8.9 53.5 0.806 64 min 33 min 28 min
Std. (7 pt.) M 9.6 50.4 0.806 39 min 30 min 5 min
Multiscale O 11.2 47.3 0.812 43 min 7 min 32 min
Multiscale M 10.4 45.4 0.828 17 min 7 min 6 min

Misfit:

Time-shift misfit ‖∆t‖2

Amplitude misfit [
∑

k

∑
j(f

obs
w − f cal

w )2]1/2

Permeability discrepancy 1/N
∑N

i=1 | ln kref
i − ln kmatch

i |
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Robustness with respect to data reduction
Uncertainty quantification, revisited
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Robustness with respect to data reduction
Million-cell model, revisited

Reduction in residuals
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Extentions

Unstructured grids (done for inversion algorithm)

Corner-point grids (testing to be done on Norne-model)

Other types of data / more general flow

Inclusion of seismics

Use of sensitivities for other optimization workflows

. . .
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