Reservoir Simulation of Million-Cell Models on Desktop Computers

Knut-Andreas Lie

SINTEF ICT, Dept. Applied Mathematics

The 22nd Kongsberg Seminar, May 2009

Applied Mathematics

The scales that impact fluid flow in oil reservoirs range from

- the micrometer scale of pores and pore channels
- via dm-m scale of well bores and laminae sediments
- to sedimentary structures that stretch across entire reservoirs.

Geological models:

- here: geo-cellular models
- describe the reservoir geometry (horizons, faults, etc)
- typically generated using geostatistics
- give rock parameters (permeability and porosity)

Geological models:

- here: geo-cellular models
- describe the reservoir geometry (horizons, faults, etc)
- typically generated using geostatistics
- give rock parameters (permeability and porosity)

Rock parameters:

- have a multiscale structure
- details on all scales impact flow
- permeability spans many orders of magnitude

Gap in resolution:

- $\bullet~\mbox{Geomodels:}~10^7-10^9~\mbox{cells}$
- Simulators: $10^5 10^6$ cells

Gap in resolution:

- $\bullet~\mbox{Geomodels:}~10^7-10^9~\mbox{cells}$
- Simulators: $10^5 10^6$ cells

 \longrightarrow sector models and/or upscaling of parameters

Gap in resolution:

- $\bullet~\mbox{Geomodels:}~10^7-10^9~\mbox{cells}$
- Simulators: $10^5 10^6$ cells
- $\longrightarrow sector models and/or upscaling of parameters$

Gap in resolution:

- $\bullet~\mbox{Geomodels:}~10^7-10^9~\mbox{cells}$
- Simulators: $10^5 10^6$ cells

 \longrightarrow sector models and/or upscaling of parameters

Gap in resolution:

- $\bullet~\mbox{Geomodels:}~10^7-10^9~\mbox{cells}$
- Simulators: $10^5 10^6$ cells

 $\longrightarrow sector models and/or upscaling of parameters$

↓ ↑

Gap in resolution:

- $\bullet~\mbox{Geomodels:}~10^7-10^9~\mbox{cells}$
- $\bullet~\mbox{Simulators:}~10^5-10^6~\mbox{cells}$
- $\longrightarrow sector models and/or upscaling of parameters$

Many alternatives:

- Harmonic, arithmetic, geometric, . . .
- Local methods (K or T)
- Global methods
- Local-global methods
- Pseudo methods

SINTEF

Ensemble methods

↓ ↑

P₩

P=1

07/05/2009 ∢ □ ▶

4/26

P=1

P=0

Applied Mathematics

Simulation on Seismic/Geologic Grid Why do we want/need it?

Upscaling:

- bottleneck in workflow
- loss of information/accuracy
- not sufficiently robust
- extensions to multiphase flow are somewhat shaky

Simulation on Seismic/Geologic Grid Why do we want/need it?

Upscaling:

- bottleneck in workflow
- loss of information/accuracy
- not sufficiently robust
- extensions to multiphase flow are somewhat shaky

Simulation on seismic/geologic grid:

- best possible resolution of the physical processes
- faster mode building and history matching
- makes inversion a better instrument to find remaining oil
- better estimation of uncertainty by running alternative models

Bypassed oil (4D inversion vs simulation)

Arnesen, WPC, Madrid, 2008

Difference in resolution (10 million vs 1 billion cells)

From Dogru et al., SPE 119272

Difference in resolution (10 million vs 1 billion cells)

From Dogru et al., SPE 119272

Simplified flow physics

"Full physics" is typically only required towards the end of a workflow

Simplified flow physics

"Full physics" is typically only required towards the end of a workflow

Operator splitting

- fully coupled solution is slow..
- subequations often have different time scales
- splitting opens up for tailor-made methods

07/05/2009 ∢ □ ▶

8/26

Streamline Simulation Operator splitting + Euler-Lagrangian formulation

(Figures by Yann Gautier)

9/26

- $60 \times 220 \times 85 = 1.1$ million cells
- 2000 days of production from five-spot, 25 time steps
- Intel 2.4 GHz with 2 GB RAM:

multigrid:	8 min 36 sec
multiscale:	2 min 22 sec

- $60 \times 220 \times 85 = 1.1$ million cells
- 2000 days of production from five-spot, 25 time steps
- Intel 2.4 GHz with 2 GB RAM:

multigrid:	8 min 36 sec
multiscale:	2 min 22 sec

FrontSim:

- $360 \times 440 \times 85 = 13.5$ million cells
- Intel Xeon 5482, 64 Gb, 3.2 GHz
- Single thread, 13.5 Gb RAM
- Computing time: 1 h 55 min

() SINTEF

Applied Mathematics

Fast Solution of Fluid Transport Optimal ordering: finite volumes (almost) as fast as streamline simulation?

() SINTEF

Applied Mathematics

Model: 50 \times 50 \times 1 km, rescaled by a factor 0.1 Grid: 27 437 active cells.

Δt	NR–UM	FPACK	PACK NR-PFS		NPFS	
days	time (sec)	iterations	time (sec)	iterations	time (sec)	iterations
125	2.26e+00	12.69	3.28e-01	12.69	4.44e-02	0.93
250	2.35e+00	12.62	3.32e-01	12.62	4.73e-02	1.10
500	2.38e+00	13.25	3.46e-01	13.25	4.16e-02	1.41
1000	2.50e+00	13.50	3.49e-01	13.50	4.21e-02	1.99
125	2.19e+00	12.69	3.91e-01	12.69	5.82e-02	1.33
250	2.02e+00	12.75	3.86e-01	12.75	6.07e-02	1.48
500	2.09e+00	13.25	3.90e-01	13.25	6.16e-02	1.79
1000	2.20e+00	14.00	4.11e-01	14.00	6.39e-02	2.38
incompressible oil co		ompressible oil				

Time to compute reordering: $3.6 \cdot 10^{-3}$ sec

cycles: 77.4 on average, involving 780 cells, 380 cells in largest cycle

Applied Mathematics

07/05/2009 ∢ □ ▶ 14/26

Million-Cell Models on Desktop Computers How to get there..?

Use of sparsity / (multiscale) structure

- effects resolved on different scales
- small changes from one step to next
- small changes from one simulation to next

Million-Cell Models on Desktop Computers How to get there..?

Use of sparsity / (multiscale) structure

- effects resolved on different scales
- small changes from one step to next
- small changes from one simulation to next

Example: SPE10, Layer 36

Pressure field computed with mimetic FDM

Velocity field computed with mimetic FDM

Observations:

- Pressure on coarse grid
- Velocity on fine grid
- \longrightarrow multiscale method

() SINTEF

Applied Mathematics

From upscaling to multiscale methods

Standard upscaling:

Coarse grid blocks:

∦ ↑

Flow problems:

07/05/2009 < □ ▶ 16/26

From upscaling to multiscale methods

Standard upscaling:

↓ ↑

Coarse grid blocks:

Flow problems:

() SINTEF

Multiscale method:

Coarse grid blocks:

Flow problems:

Applied Mathematics

From upscaling to multiscale methods

Standard upscaling:

↓ ↑

Multiscale method:

Flow problems:

q<u>†</u>1

q=1

 $\downarrow \uparrow$

Flow problems:

() SINTEF

Coarse grid blocks:

From upscaling to multiscale methods

Standard upscaling:

Multiscale method:

Coarse grid blocks:

q<u>†</u>1

q=1

Flow problems:

↓ ↑ Coarse grid blocks:

 $\downarrow \uparrow$

Flow problems:

Computation of multiscale basis functions

Each cell Ω_i : pressure basis ϕ_i Each face Γ_{ij} : velocity basis ψ_{ij}

$$ec{\psi}_{ij} = -\lambda \mathbf{K}
abla \phi_{ij}$$
 $abla \cdot ec{\psi}_{ij} = \begin{cases} w_i(x), & x \in \Omega_i \\ -w_j(x), & x \in \Omega_j \\ 0, & \text{otherwise} \end{cases}$

() SINTEF

Computation of multiscale basis functions

Each cell Ω_i : pressure basis ϕ_i Each face Γ_{ij} : velocity basis ψ_{ij}

$$ec{\psi_{ij}} = -\lambda \mathbf{K}
abla \phi_{ij}$$
 $abla \cdot ec{\psi_{ij}} = \begin{cases} w_i(x), & x \in \Omega_i \\ -w_j(x), & x \in \Omega_j \\ 0, & \text{otherwise} \end{cases}$

Homogeneous K:

Heterogeneous K:

🕥 SINTEF

Challenges posed by grids from real-life models

Unstructured grids:

Skewed and degenerate cells:

(Very) high aspect ratios:

 $^{800\,\}times\,800\,\times\,0.25$ m

Non-matching cells:

Challenges posed by grids from real-life models

Unstructured grids:

Skewed and degenerate cells:

Meeting the challenges:

- Automated coarsening algorithms
- Multipoint/mimetic fine-grid discretization

(Very) high aspect ratios:

 $^{800 \}times 800 \times 0.25~m$

Non-matching cells:

() SINTEF

07/05/2009 < 🗆 > 18/26

Multiscale Pressure Solvers Workflow with automated upgridding in 3D

1) Automated coarsening: uniform partition in index space for corner-point grids

3) Compute basis functions

SINTEF

$$\nabla \cdot \psi_{ij} = \begin{cases} w_i(x), \\ -w_j(x), \end{cases}$$
 for all pairs of blocks

4) Block in coarse grid: component for building global solution

Applied Mathematics

Computational cost consists of:

- basis functions (fine grid)
- global problem (coarse grid)

Multiscale Pressure Solvers Key to effiency: reuse of computations

Computational cost consists of:

- basis functions (fine grid)
- global problem (coarse grid)

Full simulation: $\mathcal{O}(10^2)$ time steps

High efficiency for multiphase flows:

- Elliptic decomposition
- Reuse basis functions
- Easy to parallelize

Applied Mathematics

Example 10th SPE Comparative Solution Project

() SINTEF

Applied Mathematics

Assimilation of production data to calibrate model

- 1 million cells, 32 injectors, and 69 producers
- $\bullet~2475~\text{days}\approx7$ years of water-cut data

Generalized travel-time inversion (quasi-linearization of misfit functional) with analytical sensitivities along streamlines

	CPU-time (wall clock)					
Solver	Total	Pres.	Transp.			
Multigrid	39 min	30 min	5 min			
Multiscale	17 min	7 min	6 min			
Computer: 2.4 GHz Core 2 Duo, with 2 GB RAM						

Computer: 2.4 GHz Core 2 Duo, with 2 GB RAM History match: 7 forward simulations, 6 inversions

Notice: obvious potential for parallelization of basis functions, streamline tracing and 1D transport solves not utilized

Applied Mathematics

Adaptive Model Reduction of Transport Grids Flow-based nonuniform coarsening

- **1** Segment the domain according to $\ln |\vec{v}|$
- ② Combine small blocks
- Split blocks with too large flow
- Ombine small blocks

SPE 10, Layer 37

Logarithm of permeability: Layer 37 in SPE10

Logarithm of velocity on non-uniform coarse grid: 208 cells

Example Production data for a real-field model

() SINTEF

Applied Mathematics

Keys to enable fast simulation on seismic/geological grids:

- Simplified physics
- Operator splitting
- Sparsity / (multiscale) structure

In the future: fit-for-purpose rather than one-simulator-solves-all ..?

Current and Future Research

Geological representation

Applied Mathematics