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Motivation: Carbonate Reservoirs

Carbonate reservoirs contain:

60% of the world’s oil reserves

40% of the world’s gas reserves

consist of free-flow and porous
regions

(Liying Zhang, 2005)

(courtesy of NTNU)
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Modeling of Vuggy and Naturally Fractured Reservoirs

Conventional Approach:

Porous region:
Darcy’s law, mass conservation:

µK−1~uD +∇pD = ~f in ΩD

∇ · ~uD = q in ΩD

⇔

⇔

Free-flow region:
Stokes equations:

−µ∆~uS +∇pS = ~f in ΩS

∇ · ~uS = q in ΩS

matrix vug

fill

Problems:

domains not well separated

difficulties obtaining precise information
about location and geometry

hard to model loose fill-in material

Applied Mathematics 29/6/2009 3/21



Modeling of Vuggy and Naturally Fractured Reservoirs

Conventional Approach:

Porous region:
Darcy’s law, mass conservation:

µK−1~uD +∇pD = ~f in ΩD

∇ · ~uD = q in ΩD

⇔

⇔

Free-flow region:
Stokes equations:

−µ∆~uS +∇pS = ~f in ΩS

∇ · ~uS = q in ΩS

matrix vug

fill

Problems:

domains not well separated

difficulties obtaining precise information
about location and geometry

hard to model loose fill-in material

Applied Mathematics 29/6/2009 3/21



Modeling of Vuggy and Naturally Fractured Reservoirs

The Stokes–Brinkman model

Introduce a single-parameter family

µK−1~u+∇p− µ̃∆~u = ~f in Ω

∇ · ~uS = q in Ω.

µ̃ – effective viscosity, µ – fluid viscosity

Special cases:

K→∞, µ̃ = µ =⇒ Stokes–Brinkman −→ Stokes

µ̃ = 0 =⇒ Stokes–Brinkman −→ Darcy

Here: µ̃ = µ. For typical parameters seen in carbonate reservoirs

∇p = −µK−1~u+ µ̃∆~u ≈ −µK−1~u
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Modeling of Vuggy and Naturally Fractured Reservoirs

2-dimensional Taylor-Hood elements:

Pressure (Q1): Velocity (Q2):

Variational formulation:
Find ~u ∈ V and p ∈ Q such that

b(~u, ~v)− c(p, ~v) = 0 ∀~v ∈ V
c(~u, π) = (q, π) ∀π ∈ Q

where V ⊂ (H1(Ω))2 and Q ⊂ L2(Ω)

Applied Mathematics 29/6/2009 5/21



Modeling of Vuggy and Naturally Fractured Reservoirs

2-dimensional Taylor-Hood elements:

Pressure (Q1): Velocity (Q2):

Variational formulation:
Find ~u ∈ V and p ∈ Q such that

b(~u, ~v)− c(p, ~v) = 0 ∀~v ∈ V
c(~u, π) = (q, π) ∀π ∈ Q

where V ⊂ (H1(Ω))2 and Q ⊂ L2(Ω)

Applied Mathematics 29/6/2009 5/21



Modeling of Vuggy and Naturally Fractured Reservoirs

Mixed finite-element system (Stokes-Brinkman)B1 0 C1

0 B2 C2

CT
1 CT

2 0

u1

u2

−p

 =

0
0
q


The entries in the matrices are:

Bij,k =

∫
Ω

µviK
−1
k vj dΩ +

∫
Ω

µ̃

(
∂vi

∂x1

∂vj

∂x1
+
∂vi

∂x2

∂vj

∂x2

)
dΩ,

Cij,k =

∫
Ω

∂vi

∂xk
πj dΩ.

where k = 1, 2 denotes the spatial dimension and K =

»
K1 0
0 K2

–
.

100× 100 cells ⇒ 91.003 dofs ⇒ multiscale multiphysics method
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Feasible Approaches: Upscaling or Multiscale Methods

Darcy’s law on coarse scale, Stokes–Brinkman on fine scale
Flow-based upscaling:

⇓

⇑

Coarse blocks (Darcy):

⇓

⇑

Darcy–Stokes or
Stokes–Brinkman:

Multiscale method:

⇓

⇑

Coarse blocks (Darcy):

⇓

⇑

Stokes–Brinkman:
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Multiscale Mixed Finite Elements

Grids and basis functions:
Fine grid with permeability attached to each cell:

Construct a coarse grid, and choose the discretisation spaces U and V ms

such that:

For each coarse block Ti, there is a basis function φi ∈ U .

For each coarse edge Γij , there is a basis function ψij ∈ V ms.
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Multiscale Mixed Finite Elements

Decomposition:

p(x, y) =
∑

i piφi(x, y) – sum over all coarse blocks

v(x, y) =
∑

ij vijψij(x, y) – sum over all block faces

Basis φi for pressure:

φi =

{
1 in Ti,

0 otherwise.

Basis ψij for velocity:

homogeneous (RT0) heterogeneous
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Construction of Multiscale Basis Functions

Velocity basis function ψij solves a local
system of equations:

µK−1 ~ψij +∇ϕij − µ̃∆~ψij = 0,

∇ · ~ψij =


wi(~x), if ~x ∈ Ti,

−wj(~x), if ~x ∈ Tj ,

0, otherwise.

wi ∝ trace (Ki) drives a unit flow through Γij .

If there is a sink/source in Ti, then wi ∝ qi.

Ωi Ωj

Ωij

Permeability

Weight function

Basis function
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Hybrid Formulation (for the Darcy Equations)

Mixed method gives a saddle-point problem −→ hybrid formulation: B C D

CT 0 0
DT 0 0

 v
−p
λ

 =

0
f
0

 vij

λij

pi pj

where:

Bij =

Z
Ω

µ~vi K−1~vj dΩ, Cij =

Z
Ω

χTj
∇ · ~vi dΩ, Dij =

Z
∂Ω

|~vi · ~nj | ds,

Split the basis functions, ψij = ψH
ij −ψ

H
ji

ψH
ij (E) =

(
ψij(E), if E ∈ Tij \ Tj

0, otherwise
ψH

ji(E) =

(
−ψij(E), if E ∈ Tj

0, otherwise

Hybrid basis functions ψH
ij as columns in a matrix Ψ
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MsMFEs for the Stokes–Brinkman Equations

Coarse-scale hybrid mixed system (Darcy):Ψ̂
T
BTHΨ̂ Ψ̂

T
CI Ψ̂

T
DJ

ITCTΨ̂ 0 0

J TDTΨ̂ 0 0


 vc

−pc

λc

 =

 0

f c

0


Ψ̂ = ΨA−1

Ψ – matrix with basis functions
A – matrix with face areas
BTH – fine-scale Darcy TH-discretization
I – prolongation from blocks to cells
J – prolongation from block faces to cell faces

Reconstruction of fine-scale velocity

vf = Ψ̂vc

(Pressure bases may also have fine-scale
structure if necessary)

0 20 40 60 80 100 120 140

0

20

40

60

80

100

120

140

nz = 588
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Numerical Examples

Test of the multiscale Darcy/Stokes-Brinkman method:

1 2D sandstone reservoirs (no free-flow regions)

2 2D vuggy reservoir (short correlation)

3 2D fractured reservoir (long correlation)

4 2D vuggy and fractured reservoir (short and long correlation)

5 3D core sample

All simulations in the MATLAB Reservoir Simulation Toolbox
http://www.sintef.no/MRST (GNU Public License)
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Example 1: Sandstone reservoir

Model 2 of the 10th SPE Comparative Solution Project

Tarbert (1–35) Upper Ness (36–85)
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Example 1: Sandstone reservoir
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Example 1: Sandstone reservoir
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Example 2: Vuggy reservoir (short correlation)

Fine-scale model: Multiscale model: Kvugs =
200× 200 cells 5× 5 blocks 107 ×Kmatrix

26 random vugs (areas= 1.8–10.4 m2), ‖vms−v‖2

‖v‖2
= 0.07
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Example 3: Fractured reservoir (long correlation)

Fine-scale model: Multiscale model: Kvugs =
200× 200 cells 5× 5 blocks 107 ×Kmatrix

14 random fractures of varying length, ‖vms−v‖2

‖v‖2
= 0.07
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Example 4: Vuggy and fractured reservoir

‖vms−v‖2

‖v‖2
= 0.09
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Example 4: Vuggy and fractured reservoir
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Example 5: Core sample from Shell E&P

Full model:

512× 512× 26 cells
3.449.654 active

Subsample:

85× 85× 8 cells, 55.192 active, 75 blocks
pressure boundary conditions
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Concluding Remarks

Proof of concept for our MsMFE method:

Multiphysics with different equations on the coarse and fine scales

Can be used to simulate flow in carbonate reservoirs

Challenges/issues:

Very high number of dofs

Raviart–Thomas not exactly reproduced for homogeneous medium

Ideas to pursue:

Triangular and unstructured grids

Correction functions

Use of (limited) global information
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